Loading…

Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2020-04, Vol.181 (3), p.621-636.e22
Main Authors: Guo, Chun-Jie, Ma, Xu-Kai, Xing, Yu-Hang, Zheng, Chuan-Chuan, Xu, Yi-Feng, Shan, Lin, Zhang, Jun, Wang, Shaohua, Wang, Yangming, Carmichael, Gordon G., Yang, Li, Chen, Ling-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293
cites cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293
container_end_page 636.e22
container_issue 3
container_start_page 621
container_title Cell
container_volume 181
creator Guo, Chun-Jie
Ma, Xu-Kai
Xing, Yu-Hang
Zheng, Chuan-Chuan
Xu, Yi-Feng
Shan, Lin
Zhang, Jun
Wang, Shaohua
Wang, Yangming
Carmichael, Gordon G.
Yang, Li
Chen, Ling-Ling
description Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function. [Display omitted] •Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.
doi_str_mv 10.1016/j.cell.2020.03.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439382664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420302683</els_id><sourcerecordid>2439382664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</originalsourceid><addsrcrecordid>eNqFkM1LHDEYh4O06Gr9B3ooOfYy45uPSTLgRbZ-gdhS6zlkM--ULLuJTTJC_3tnWeuxnsILz_MjPIR8ZtAyYOps3XrcbFoOHFoQLYA6IAsGvW4k0_wDWQD0vDFKyyNyXMoaAEzXdYfkSHDe9dLoBXn4FkoN0Vf6IyePpYT4m6aRbqL_eX9R6DLFmsNqqlhoTfQ-xcanWDA_40CvplkM80lDpA8Vt3Q5f6h8Ih9Htyl4-vqekMery1_Lm-bu-_Xt8uKu8bLva6OMl94JDUx6Nhg3ylWnvGZaMb1yZlBounEUQiPKDkFwp3rtGBg5CuV4L07I1_3uU05_JizVbkPZJXER01Qsl6IXhisl30eF0UpxIboZ5XvU51RKxtE-5bB1-a9lYHfd7druTLvrbkHYufssfXndn1ZbHN6Uf6Fn4HwP4BzkOWC2xQeMHoeQ0Vc7pPC__RddlJLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387662335</pqid></control><display><type>article</type><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><source>ScienceDirect®</source><creator>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</creator><creatorcontrib>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</creatorcontrib><description>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function. [Display omitted] •Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.03.006</identifier><identifier>PMID: 32259487</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; beta catenin ; Cell Differentiation - genetics ; Cell Line ; Cells, Cultured ; conservation ; cytoplasm ; embryonic stem cell ; embryonic stem cells ; Embryonic Stem Cells - metabolism ; ESC ; evolution ; FAST ; Human Embryonic Stem Cells - metabolism ; Humans ; Intracellular Space - genetics ; lncRNA ; long noncoding RNA ; messenger RNA ; Mice ; Mouse Embryonic Stem Cells - metabolism ; non-coding RNA ; PPIE ; RNA processing ; RNA Splicing - genetics ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Messenger - metabolism ; Signal Transduction - genetics ; splicing ; Stem Cells - metabolism ; Stem Cells - pathology ; subcellular localization ; ubiquitin-protein ligase ; WNT</subject><ispartof>Cell, 2020-04, Vol.181 (3), p.621-636.e22</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</citedby><cites>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420302683$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chun-Jie</creatorcontrib><creatorcontrib>Ma, Xu-Kai</creatorcontrib><creatorcontrib>Xing, Yu-Hang</creatorcontrib><creatorcontrib>Zheng, Chuan-Chuan</creatorcontrib><creatorcontrib>Xu, Yi-Feng</creatorcontrib><creatorcontrib>Shan, Lin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Wang, Yangming</creatorcontrib><creatorcontrib>Carmichael, Gordon G.</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Ling-Ling</creatorcontrib><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><title>Cell</title><addtitle>Cell</addtitle><description>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function. [Display omitted] •Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</description><subject>Animals</subject><subject>beta catenin</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>conservation</subject><subject>cytoplasm</subject><subject>embryonic stem cell</subject><subject>embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>ESC</subject><subject>evolution</subject><subject>FAST</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Intracellular Space - genetics</subject><subject>lncRNA</subject><subject>long noncoding RNA</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>non-coding RNA</subject><subject>PPIE</subject><subject>RNA processing</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>splicing</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - pathology</subject><subject>subcellular localization</subject><subject>ubiquitin-protein ligase</subject><subject>WNT</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LHDEYh4O06Gr9B3ooOfYy45uPSTLgRbZ-gdhS6zlkM--ULLuJTTJC_3tnWeuxnsILz_MjPIR8ZtAyYOps3XrcbFoOHFoQLYA6IAsGvW4k0_wDWQD0vDFKyyNyXMoaAEzXdYfkSHDe9dLoBXn4FkoN0Vf6IyePpYT4m6aRbqL_eX9R6DLFmsNqqlhoTfQ-xcanWDA_40CvplkM80lDpA8Vt3Q5f6h8Ih9Htyl4-vqekMery1_Lm-bu-_Xt8uKu8bLva6OMl94JDUx6Nhg3ylWnvGZaMb1yZlBounEUQiPKDkFwp3rtGBg5CuV4L07I1_3uU05_JizVbkPZJXER01Qsl6IXhisl30eF0UpxIboZ5XvU51RKxtE-5bB1-a9lYHfd7druTLvrbkHYufssfXndn1ZbHN6Uf6Fn4HwP4BzkOWC2xQeMHoeQ0Vc7pPC__RddlJLG</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Guo, Chun-Jie</creator><creator>Ma, Xu-Kai</creator><creator>Xing, Yu-Hang</creator><creator>Zheng, Chuan-Chuan</creator><creator>Xu, Yi-Feng</creator><creator>Shan, Lin</creator><creator>Zhang, Jun</creator><creator>Wang, Shaohua</creator><creator>Wang, Yangming</creator><creator>Carmichael, Gordon G.</creator><creator>Yang, Li</creator><creator>Chen, Ling-Ling</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20200430</creationdate><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><author>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>beta catenin</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>conservation</topic><topic>cytoplasm</topic><topic>embryonic stem cell</topic><topic>embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>ESC</topic><topic>evolution</topic><topic>FAST</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Intracellular Space - genetics</topic><topic>lncRNA</topic><topic>long noncoding RNA</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>non-coding RNA</topic><topic>PPIE</topic><topic>RNA processing</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>splicing</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - pathology</topic><topic>subcellular localization</topic><topic>ubiquitin-protein ligase</topic><topic>WNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chun-Jie</creatorcontrib><creatorcontrib>Ma, Xu-Kai</creatorcontrib><creatorcontrib>Xing, Yu-Hang</creatorcontrib><creatorcontrib>Zheng, Chuan-Chuan</creatorcontrib><creatorcontrib>Xu, Yi-Feng</creatorcontrib><creatorcontrib>Shan, Lin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Wang, Yangming</creatorcontrib><creatorcontrib>Carmichael, Gordon G.</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Ling-Ling</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chun-Jie</au><au>Ma, Xu-Kai</au><au>Xing, Yu-Hang</au><au>Zheng, Chuan-Chuan</au><au>Xu, Yi-Feng</au><au>Shan, Lin</au><au>Zhang, Jun</au><au>Wang, Shaohua</au><au>Wang, Yangming</au><au>Carmichael, Gordon G.</au><au>Yang, Li</au><au>Chen, Ling-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>181</volume><issue>3</issue><spage>621</spage><epage>636.e22</epage><pages>621-636.e22</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function. [Display omitted] •Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32259487</pmid><doi>10.1016/j.cell.2020.03.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-04, Vol.181 (3), p.621-636.e22
issn 0092-8674
1097-4172
language eng
recordid cdi_proquest_miscellaneous_2439382664
source ScienceDirect®
subjects Animals
beta catenin
Cell Differentiation - genetics
Cell Line
Cells, Cultured
conservation
cytoplasm
embryonic stem cell
embryonic stem cells
Embryonic Stem Cells - metabolism
ESC
evolution
FAST
Human Embryonic Stem Cells - metabolism
Humans
Intracellular Space - genetics
lncRNA
long noncoding RNA
messenger RNA
Mice
Mouse Embryonic Stem Cells - metabolism
non-coding RNA
PPIE
RNA processing
RNA Splicing - genetics
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - metabolism
Signal Transduction - genetics
splicing
Stem Cells - metabolism
Stem Cells - pathology
subcellular localization
ubiquitin-protein ligase
WNT
title Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Processing%20of%20lncRNAs%20Contributes%20to%20Non-conserved%20Functions%20in%20Stem%20Cells&rft.jtitle=Cell&rft.au=Guo,%20Chun-Jie&rft.date=2020-04-30&rft.volume=181&rft.issue=3&rft.spage=621&rft.epage=636.e22&rft.pages=621-636.e22&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.03.006&rft_dat=%3Cproquest_cross%3E2439382664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387662335&rft_id=info:pmid/32259487&rfr_iscdi=true