Loading…
Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells
Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction...
Saved in:
Published in: | Cell 2020-04, Vol.181 (3), p.621-636.e22 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293 |
container_end_page | 636.e22 |
container_issue | 3 |
container_start_page | 621 |
container_title | Cell |
container_volume | 181 |
creator | Guo, Chun-Jie Ma, Xu-Kai Xing, Yu-Hang Zheng, Chuan-Chuan Xu, Yi-Feng Shan, Lin Zhang, Jun Wang, Shaohua Wang, Yangming Carmichael, Gordon G. Yang, Li Chen, Ling-Ling |
description | Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
[Display omitted]
•Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution
A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing. |
doi_str_mv | 10.1016/j.cell.2020.03.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2439382664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420302683</els_id><sourcerecordid>2439382664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</originalsourceid><addsrcrecordid>eNqFkM1LHDEYh4O06Gr9B3ooOfYy45uPSTLgRbZ-gdhS6zlkM--ULLuJTTJC_3tnWeuxnsILz_MjPIR8ZtAyYOps3XrcbFoOHFoQLYA6IAsGvW4k0_wDWQD0vDFKyyNyXMoaAEzXdYfkSHDe9dLoBXn4FkoN0Vf6IyePpYT4m6aRbqL_eX9R6DLFmsNqqlhoTfQ-xcanWDA_40CvplkM80lDpA8Vt3Q5f6h8Ih9Htyl4-vqekMery1_Lm-bu-_Xt8uKu8bLva6OMl94JDUx6Nhg3ylWnvGZaMb1yZlBounEUQiPKDkFwp3rtGBg5CuV4L07I1_3uU05_JizVbkPZJXER01Qsl6IXhisl30eF0UpxIboZ5XvU51RKxtE-5bB1-a9lYHfd7druTLvrbkHYufssfXndn1ZbHN6Uf6Fn4HwP4BzkOWC2xQeMHoeQ0Vc7pPC__RddlJLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387662335</pqid></control><display><type>article</type><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><source>ScienceDirect®</source><creator>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</creator><creatorcontrib>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</creatorcontrib><description>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
[Display omitted]
•Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution
A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.03.006</identifier><identifier>PMID: 32259487</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; beta catenin ; Cell Differentiation - genetics ; Cell Line ; Cells, Cultured ; conservation ; cytoplasm ; embryonic stem cell ; embryonic stem cells ; Embryonic Stem Cells - metabolism ; ESC ; evolution ; FAST ; Human Embryonic Stem Cells - metabolism ; Humans ; Intracellular Space - genetics ; lncRNA ; long noncoding RNA ; messenger RNA ; Mice ; Mouse Embryonic Stem Cells - metabolism ; non-coding RNA ; PPIE ; RNA processing ; RNA Splicing - genetics ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Messenger - metabolism ; Signal Transduction - genetics ; splicing ; Stem Cells - metabolism ; Stem Cells - pathology ; subcellular localization ; ubiquitin-protein ligase ; WNT</subject><ispartof>Cell, 2020-04, Vol.181 (3), p.621-636.e22</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</citedby><cites>FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420302683$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32259487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chun-Jie</creatorcontrib><creatorcontrib>Ma, Xu-Kai</creatorcontrib><creatorcontrib>Xing, Yu-Hang</creatorcontrib><creatorcontrib>Zheng, Chuan-Chuan</creatorcontrib><creatorcontrib>Xu, Yi-Feng</creatorcontrib><creatorcontrib>Shan, Lin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Wang, Yangming</creatorcontrib><creatorcontrib>Carmichael, Gordon G.</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Ling-Ling</creatorcontrib><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><title>Cell</title><addtitle>Cell</addtitle><description>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
[Display omitted]
•Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution
A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</description><subject>Animals</subject><subject>beta catenin</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>conservation</subject><subject>cytoplasm</subject><subject>embryonic stem cell</subject><subject>embryonic stem cells</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>ESC</subject><subject>evolution</subject><subject>FAST</subject><subject>Human Embryonic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Intracellular Space - genetics</subject><subject>lncRNA</subject><subject>long noncoding RNA</subject><subject>messenger RNA</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>non-coding RNA</subject><subject>PPIE</subject><subject>RNA processing</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>splicing</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - pathology</subject><subject>subcellular localization</subject><subject>ubiquitin-protein ligase</subject><subject>WNT</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LHDEYh4O06Gr9B3ooOfYy45uPSTLgRbZ-gdhS6zlkM--ULLuJTTJC_3tnWeuxnsILz_MjPIR8ZtAyYOps3XrcbFoOHFoQLYA6IAsGvW4k0_wDWQD0vDFKyyNyXMoaAEzXdYfkSHDe9dLoBXn4FkoN0Vf6IyePpYT4m6aRbqL_eX9R6DLFmsNqqlhoTfQ-xcanWDA_40CvplkM80lDpA8Vt3Q5f6h8Ih9Htyl4-vqekMery1_Lm-bu-_Xt8uKu8bLva6OMl94JDUx6Nhg3ylWnvGZaMb1yZlBounEUQiPKDkFwp3rtGBg5CuV4L07I1_3uU05_JizVbkPZJXER01Qsl6IXhisl30eF0UpxIboZ5XvU51RKxtE-5bB1-a9lYHfd7druTLvrbkHYufssfXndn1ZbHN6Uf6Fn4HwP4BzkOWC2xQeMHoeQ0Vc7pPC__RddlJLG</recordid><startdate>20200430</startdate><enddate>20200430</enddate><creator>Guo, Chun-Jie</creator><creator>Ma, Xu-Kai</creator><creator>Xing, Yu-Hang</creator><creator>Zheng, Chuan-Chuan</creator><creator>Xu, Yi-Feng</creator><creator>Shan, Lin</creator><creator>Zhang, Jun</creator><creator>Wang, Shaohua</creator><creator>Wang, Yangming</creator><creator>Carmichael, Gordon G.</creator><creator>Yang, Li</creator><creator>Chen, Ling-Ling</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20200430</creationdate><title>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</title><author>Guo, Chun-Jie ; Ma, Xu-Kai ; Xing, Yu-Hang ; Zheng, Chuan-Chuan ; Xu, Yi-Feng ; Shan, Lin ; Zhang, Jun ; Wang, Shaohua ; Wang, Yangming ; Carmichael, Gordon G. ; Yang, Li ; Chen, Ling-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>beta catenin</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>conservation</topic><topic>cytoplasm</topic><topic>embryonic stem cell</topic><topic>embryonic stem cells</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>ESC</topic><topic>evolution</topic><topic>FAST</topic><topic>Human Embryonic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Intracellular Space - genetics</topic><topic>lncRNA</topic><topic>long noncoding RNA</topic><topic>messenger RNA</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>non-coding RNA</topic><topic>PPIE</topic><topic>RNA processing</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>splicing</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - pathology</topic><topic>subcellular localization</topic><topic>ubiquitin-protein ligase</topic><topic>WNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chun-Jie</creatorcontrib><creatorcontrib>Ma, Xu-Kai</creatorcontrib><creatorcontrib>Xing, Yu-Hang</creatorcontrib><creatorcontrib>Zheng, Chuan-Chuan</creatorcontrib><creatorcontrib>Xu, Yi-Feng</creatorcontrib><creatorcontrib>Shan, Lin</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shaohua</creatorcontrib><creatorcontrib>Wang, Yangming</creatorcontrib><creatorcontrib>Carmichael, Gordon G.</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Ling-Ling</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chun-Jie</au><au>Ma, Xu-Kai</au><au>Xing, Yu-Hang</au><au>Zheng, Chuan-Chuan</au><au>Xu, Yi-Feng</au><au>Shan, Lin</au><au>Zhang, Jun</au><au>Wang, Shaohua</au><au>Wang, Yangming</au><au>Carmichael, Gordon G.</au><au>Yang, Li</au><au>Chen, Ling-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-04-30</date><risdate>2020</risdate><volume>181</volume><issue>3</issue><spage>621</spage><epage>636.e22</epage><pages>621-636.e22</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase β-TrCP and blocks its interaction with phosphorylated β-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.
[Display omitted]
•Subcellular localization of conserved lncRNAs is different in hESCs and mESCs•Cytoplasmic hFAST but not nuclear mFast promotes WNT signaling in hESC pluripotency•PPIE regulates distinct FAST processing in hESCs and mESCs•RNA processing and localization contribute to lncRNA functional evolution
A pair of lncRNA orthologs exhibits different subcellular localization in human and murine ESCs because of differential RNA processing, which, in turn, leads to their functional divergence in the context of pluripotency regulation. The findings highlight how conserved lncRNAs may achieve functional evolution through non-conserved RNA processing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32259487</pmid><doi>10.1016/j.cell.2020.03.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2020-04, Vol.181 (3), p.621-636.e22 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_proquest_miscellaneous_2439382664 |
source | ScienceDirect® |
subjects | Animals beta catenin Cell Differentiation - genetics Cell Line Cells, Cultured conservation cytoplasm embryonic stem cell embryonic stem cells Embryonic Stem Cells - metabolism ESC evolution FAST Human Embryonic Stem Cells - metabolism Humans Intracellular Space - genetics lncRNA long noncoding RNA messenger RNA Mice Mouse Embryonic Stem Cells - metabolism non-coding RNA PPIE RNA processing RNA Splicing - genetics RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Messenger - metabolism Signal Transduction - genetics splicing Stem Cells - metabolism Stem Cells - pathology subcellular localization ubiquitin-protein ligase WNT |
title | Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20Processing%20of%20lncRNAs%20Contributes%20to%20Non-conserved%20Functions%20in%20Stem%20Cells&rft.jtitle=Cell&rft.au=Guo,%20Chun-Jie&rft.date=2020-04-30&rft.volume=181&rft.issue=3&rft.spage=621&rft.epage=636.e22&rft.pages=621-636.e22&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.03.006&rft_dat=%3Cproquest_cross%3E2439382664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-68c4ca37014c1d8af4b56c717617ba8d6e85ff337ee45e032a697a1084f36a293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387662335&rft_id=info:pmid/32259487&rfr_iscdi=true |