Loading…

Effect of photobiomodulation therapy on radiodermatitis in a mouse model: an experimental animal study

This study aimed to evaluate the effect of photobiomodulation (PBM) for prevention of radiodermatitis in an irradiated mouse model and compare the efficacy of PBM using 633- or 830-nm wavelengths. Irradiated mice were randomly distributed into three groups: A (633 nm), B (830 nm), and C (without PBM...

Full description

Saved in:
Bibliographic Details
Published in:Lasers in medical science 2021-06, Vol.36 (4), p.843-853
Main Authors: Park, Ji-Hye, Byun, Hyun Jeong, Kim, Hyun Je, Oh, Se Jin, Choi, Changhoon, Noh, Jae Myung, Oh, Dongryul, Lee, Jong-Hee, Lee, Dong-Youn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to evaluate the effect of photobiomodulation (PBM) for prevention of radiodermatitis in an irradiated mouse model and compare the efficacy of PBM using 633- or 830-nm wavelengths. Irradiated mice were randomly distributed into three groups: A (633 nm), B (830 nm), and C (without PBM). On post-irradiation days 7 and 21, we compared acute damage and recovery in treated skin samples to non-irradiated skin using H&E, Masson’s trichrome, anti-CD45 and PCNA immunohistochemistry, and a TUNEL assay. Grade 3 radiodermatitis was evident only in group C. Compared with that in group C, the skin in groups A and B had significantly less epidermal hyperplasia, inflammatory cell infiltration, and thinner dermis on day 7 and less inflammatory cell infiltration, fewer apoptotic cells, and thinner dermis on day 21. However, there was no significant difference between groups A and B. This study indicates PBM could prevent severe radiodermatitis by reducing epidermal and dermal damage, inflammation, and apoptosis. There was no difference in PBM efficacy between the 633- and 830-nm wavelengths.
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-020-03123-x