Loading…

Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules

An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fail...

Full description

Saved in:
Bibliographic Details
Published in:Journal of solar energy engineering 1984-11, Vol.106 (4), p.379-386
Main Authors: Mon, G. R, Moore, D. M, Ross, R. G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 386
container_issue 4
container_start_page 379
container_title Journal of solar energy engineering
container_volume 106
creator Mon, G. R
Moore, D. M
Ross, R. G
description An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.
doi_str_mv 10.1115/1.3267615
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24403248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24403248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553</originalsourceid><addsrcrecordid>eNo9kc1LAzEQxYMoWKsHz3rYgwgetmaSzTY5yvpVqChYzyGbJrolTWqyK_jfm9LiaQ7vzZsfbxA6BzwBAHYLE0rqaQ3sAI2AEV5ywetDNMIgRFkTCsfoJKUVxkApIyPUvAenYtkY54qZ703UwXuj--LepO7TFzbEYmFiNKmPnXLF21fow09wvep08RKWgzPpFB1Z5ZI5288x-nh8WDTP5fz1adbczUtFgfVlLep2yetWW8ap4LbGjHGlNbGaTUm7tBgsbllFMn2FBViVZUOwYZiKljE6Rte73E0M30Mmkusu6UyuvAlDkqSqMCUVz8abnVHHkFI0Vm5it1bxVwKW25okyH1N2Xu1D1VJK2ej8rpL_wsCADO8jbzc2bxKSvo-JgmCM7w9KCDLFztZpbWRqzBEn5uQGSj_gP4Baqh3Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24403248</pqid></control><display><type>article</type><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><source>ASME Transactions Journals (Archives)</source><creator>Mon, G. R ; Moore, D. M ; Ross, R. G</creator><creatorcontrib>Mon, G. R ; Moore, D. M ; Ross, R. G</creatorcontrib><description>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.3267615</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>Legacy CDMS: ASME</publisher><subject>Applied sciences ; Energy ; Energy Production And Conversion ; Exact sciences and technology ; Natural energy ; Solar energy</subject><ispartof>Journal of solar energy engineering, 1984-11, Vol.106 (4), p.379-386</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9110508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mon, G. R</creatorcontrib><creatorcontrib>Moore, D. M</creatorcontrib><creatorcontrib>Ross, R. G</creatorcontrib><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy Production And Conversion</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Solar energy</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kc1LAzEQxYMoWKsHz3rYgwgetmaSzTY5yvpVqChYzyGbJrolTWqyK_jfm9LiaQ7vzZsfbxA6BzwBAHYLE0rqaQ3sAI2AEV5ywetDNMIgRFkTCsfoJKUVxkApIyPUvAenYtkY54qZ703UwXuj--LepO7TFzbEYmFiNKmPnXLF21fow09wvep08RKWgzPpFB1Z5ZI5288x-nh8WDTP5fz1adbczUtFgfVlLep2yetWW8ap4LbGjHGlNbGaTUm7tBgsbllFMn2FBViVZUOwYZiKljE6Rte73E0M30Mmkusu6UyuvAlDkqSqMCUVz8abnVHHkFI0Vm5it1bxVwKW25okyH1N2Xu1D1VJK2ej8rpL_wsCADO8jbzc2bxKSvo-JgmCM7w9KCDLFztZpbWRqzBEn5uQGSj_gP4Baqh3Aw</recordid><startdate>19841101</startdate><enddate>19841101</enddate><creator>Mon, G. R</creator><creator>Moore, D. M</creator><creator>Ross, R. G</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19841101</creationdate><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><author>Mon, G. R ; Moore, D. M ; Ross, R. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy Production And Conversion</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mon, G. R</creatorcontrib><creatorcontrib>Moore, D. M</creatorcontrib><creatorcontrib>Ross, R. G</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mon, G. R</au><au>Moore, D. M</au><au>Ross, R. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>1984-11-01</date><risdate>1984</risdate><volume>106</volume><issue>4</issue><spage>379</spage><epage>386</epage><pages>379-386</pages><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</abstract><cop>Legacy CDMS</cop><pub>ASME</pub><doi>10.1115/1.3267615</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0199-6231
ispartof Journal of solar energy engineering, 1984-11, Vol.106 (4), p.379-386
issn 0199-6231
1528-8986
language eng
recordid cdi_proquest_miscellaneous_24403248
source ASME Transactions Journals (Archives)
subjects Applied sciences
Energy
Energy Production And Conversion
Exact sciences and technology
Natural energy
Solar energy
title Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar-Cell%20Interconnect%20Design%20for%20Terrestrial%20Photovoltaic%20Modules&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Mon,%20G.%20R&rft.date=1984-11-01&rft.volume=106&rft.issue=4&rft.spage=379&rft.epage=386&rft.pages=379-386&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.3267615&rft_dat=%3Cproquest_cross%3E24403248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24403248&rft_id=info:pmid/&rfr_iscdi=true