Loading…
Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules
An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fail...
Saved in:
Published in: | Journal of solar energy engineering 1984-11, Vol.106 (4), p.379-386 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 386 |
container_issue | 4 |
container_start_page | 379 |
container_title | Journal of solar energy engineering |
container_volume | 106 |
creator | Mon, G. R Moore, D. M Ross, R. G |
description | An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing. |
doi_str_mv | 10.1115/1.3267615 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24403248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24403248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553</originalsourceid><addsrcrecordid>eNo9kc1LAzEQxYMoWKsHz3rYgwgetmaSzTY5yvpVqChYzyGbJrolTWqyK_jfm9LiaQ7vzZsfbxA6BzwBAHYLE0rqaQ3sAI2AEV5ywetDNMIgRFkTCsfoJKUVxkApIyPUvAenYtkY54qZ703UwXuj--LepO7TFzbEYmFiNKmPnXLF21fow09wvep08RKWgzPpFB1Z5ZI5288x-nh8WDTP5fz1adbczUtFgfVlLep2yetWW8ap4LbGjHGlNbGaTUm7tBgsbllFMn2FBViVZUOwYZiKljE6Rte73E0M30Mmkusu6UyuvAlDkqSqMCUVz8abnVHHkFI0Vm5it1bxVwKW25okyH1N2Xu1D1VJK2ej8rpL_wsCADO8jbzc2bxKSvo-JgmCM7w9KCDLFztZpbWRqzBEn5uQGSj_gP4Baqh3Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24403248</pqid></control><display><type>article</type><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><source>ASME Transactions Journals (Archives)</source><creator>Mon, G. R ; Moore, D. M ; Ross, R. G</creator><creatorcontrib>Mon, G. R ; Moore, D. M ; Ross, R. G</creatorcontrib><description>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</description><identifier>ISSN: 0199-6231</identifier><identifier>EISSN: 1528-8986</identifier><identifier>DOI: 10.1115/1.3267615</identifier><identifier>CODEN: JSEEDO</identifier><language>eng</language><publisher>Legacy CDMS: ASME</publisher><subject>Applied sciences ; Energy ; Energy Production And Conversion ; Exact sciences and technology ; Natural energy ; Solar energy</subject><ispartof>Journal of solar energy engineering, 1984-11, Vol.106 (4), p.379-386</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9110508$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mon, G. R</creatorcontrib><creatorcontrib>Moore, D. M</creatorcontrib><creatorcontrib>Ross, R. G</creatorcontrib><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><title>Journal of solar energy engineering</title><addtitle>J. Sol. Energy Eng</addtitle><description>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy Production And Conversion</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Solar energy</subject><issn>0199-6231</issn><issn>1528-8986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo9kc1LAzEQxYMoWKsHz3rYgwgetmaSzTY5yvpVqChYzyGbJrolTWqyK_jfm9LiaQ7vzZsfbxA6BzwBAHYLE0rqaQ3sAI2AEV5ywetDNMIgRFkTCsfoJKUVxkApIyPUvAenYtkY54qZ703UwXuj--LepO7TFzbEYmFiNKmPnXLF21fow09wvep08RKWgzPpFB1Z5ZI5288x-nh8WDTP5fz1adbczUtFgfVlLep2yetWW8ap4LbGjHGlNbGaTUm7tBgsbllFMn2FBViVZUOwYZiKljE6Rte73E0M30Mmkusu6UyuvAlDkqSqMCUVz8abnVHHkFI0Vm5it1bxVwKW25okyH1N2Xu1D1VJK2ej8rpL_wsCADO8jbzc2bxKSvo-JgmCM7w9KCDLFztZpbWRqzBEn5uQGSj_gP4Baqh3Aw</recordid><startdate>19841101</startdate><enddate>19841101</enddate><creator>Mon, G. R</creator><creator>Moore, D. M</creator><creator>Ross, R. G</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19841101</creationdate><title>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</title><author>Mon, G. R ; Moore, D. M ; Ross, R. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy Production And Conversion</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Solar energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mon, G. R</creatorcontrib><creatorcontrib>Moore, D. M</creatorcontrib><creatorcontrib>Ross, R. G</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of solar energy engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mon, G. R</au><au>Moore, D. M</au><au>Ross, R. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules</atitle><jtitle>Journal of solar energy engineering</jtitle><stitle>J. Sol. Energy Eng</stitle><date>1984-11-01</date><risdate>1984</risdate><volume>106</volume><issue>4</issue><spage>379</spage><epage>386</epage><pages>379-386</pages><issn>0199-6231</issn><eissn>1528-8986</eissn><coden>JSEEDO</coden><abstract>An investigation of interconnect fatigue in photovoltaic systems has led to the development of useful reliability-design and life-prediction algorithms presented here. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming, a functional form is fitted to experimental cumulative interconnect failure-rate data to yield statistical fatigue curves (with failure probability as a parameter) that enable (a) the prediction of cumulative interconnect failures during the design life of an array field, and (b) the unambiguous—i.e., quantitative—interpretation of data from field-service qualification (accelerated thermal-cycling) tests. Optimal interconnect cost-reliability design algorithms are derived, intended to minimize the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.</abstract><cop>Legacy CDMS</cop><pub>ASME</pub><doi>10.1115/1.3267615</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0199-6231 |
ispartof | Journal of solar energy engineering, 1984-11, Vol.106 (4), p.379-386 |
issn | 0199-6231 1528-8986 |
language | eng |
recordid | cdi_proquest_miscellaneous_24403248 |
source | ASME Transactions Journals (Archives) |
subjects | Applied sciences Energy Energy Production And Conversion Exact sciences and technology Natural energy Solar energy |
title | Solar-Cell Interconnect Design for Terrestrial Photovoltaic Modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar-Cell%20Interconnect%20Design%20for%20Terrestrial%20Photovoltaic%20Modules&rft.jtitle=Journal%20of%20solar%20energy%20engineering&rft.au=Mon,%20G.%20R&rft.date=1984-11-01&rft.volume=106&rft.issue=4&rft.spage=379&rft.epage=386&rft.pages=379-386&rft.issn=0199-6231&rft.eissn=1528-8986&rft.coden=JSEEDO&rft_id=info:doi/10.1115/1.3267615&rft_dat=%3Cproquest_cross%3E24403248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a315t-696bd86bcf58398f60558acc2fc572bdf01f0b5426154091fa58ae20e5039b553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24403248&rft_id=info:pmid/&rfr_iscdi=true |