Loading…
Human cathelicidin antimicrobial peptide LL-37 promotes lymphangiogenesis in lymphatic endothelial cells through the ERK and Akt signaling pathways
LL-37, the only member of the cathelicidin family of cationic antimicrobial peptides in humans has been shown to exhibit a wide variety of biological actions in addition to its antimicrobial activity. However, the lymphangiogenic effect of LL-37 has not been elucidated yet. In this study, we examine...
Saved in:
Published in: | Molecular biology reports 2020-09, Vol.47 (9), p.6841-6854 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | LL-37, the only member of the cathelicidin family of cationic antimicrobial peptides in humans has been shown to exhibit a wide variety of biological actions in addition to its antimicrobial activity. However, the lymphangiogenic effect of LL-37 has not been elucidated yet. In this study, we examined the effects of LL-37 on lymphangiogenesis and evaluated the underlying molecular mechanisms. LL-37 treatment significantly increased the migration and tube-like formation of human dermal lymphatic microvascular endothelial cells (HDLECs) and promoted the expression of lymphangiogenic factor in HDLECs. Treatment with LL-37 increased phosphorylation of ERK and Akt proteins in HDLECs, and pretreatment with ERK and Akt inhibitors significantly blocked the LL-37-induced HDLEC migration and tube-like formation. Furthermore, to investigate the involvement of formyl peptide receptor-like 1 (FPRL1) signaling in LL-37-induced lymphangiogenesis, HDLECs were treated with an FPRL1 antagonist. Pretreatment with the FPRL1 antagonist inhibited LL-37-induced phosphorylation of ERK and Akt proteins and attenuated LL-37-induced HDLEC migration and tube-like formation. These data indicated that LL-37 induces lymphangiogenesis in lymphatic endothelial cells via FPRL1, and the activation of the ERK and Akt-dependent signaling pathways. |
---|---|
ISSN: | 0301-4851 1573-4978 |
DOI: | 10.1007/s11033-020-05741-8 |