Loading…

Mechanism of the different metabolome responses between Plutella xylostella and Pieris rapae treated with the diamide insecticides

Diamide insecticides, such as chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole, are a new class of insecticides that selectively target insects by affecting calcium homeostasis. While this class of insecticides are effective on a wide range of insect pests, the toxicities of diami...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety 2020-10, Vol.203, p.111033-111033, Article 111033
Main Authors: Wang, Dongsheng, Lv, Weiguang, Yuan, Yongda, Zhang, Tianshu, Teng, Haiyuan, Losey, John E., Chang, Xiaoli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diamide insecticides, such as chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole, are a new class of insecticides that selectively target insects by affecting calcium homeostasis. While this class of insecticides are effective on a wide range of insect pests, the toxicities of diamide insecticides vary among species and life stages. In this study, we addressed the mechanism underlying the different responses of Plutella xylostella and Pieris rapae to diamide insecticides. The susceptibility to insecticides of P. xylostella and P. rapae larvae was assessed 2 and 4 days after exposure to chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole. P. xylostella larvae treated with distilled water (Group A), chlorantraniliprole (Group B), cyantraniliprole (Group C), and tetrachlorantraniliprole (Group D) and P. rapae larvae treated with distilled water (Group E), chlorantraniliprole (Group F), cyantraniliprole (Group G) and tetrachlorantraniliprole (Group H) were subjected to metabolomics analysis. The differential metabolites in the B vs. F, C vs. G, and D vs. H groups were analyzed, followed by pathway enrichment analysis. Chlorantraniliprole, cyantraniliprole, and tetrachlorantraniliprole all showed high toxicities for P. xylostella and P. rapae larvae. P. rapae larvae were more sensitive to the diamide insecticides than P. xylostella larvae. There were 65 overlapped differential metabolites between P. xylostella and P. rapae larvae treated with these three diamide insecticides. Pathway analysis showed that the differential metabolites were closely related with fatty acid biosynthesis and metabolism-related pathways. The differential regulation of fatty acid biosynthesis and metabolism may contribute to the different response to diamide insecticides in P. xylostella and P. rapae. •Three insecticides showed high toxicities for P. xylostella and P. rapae larvae.•P. rapae larvae were more sensitive to the diamide insecticides than P. xylostella.•Differential metabolites were closely related with fatty acid related pathways.•Fatty acid biosynthesis and metabolism may contribute to the different response.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2020.111033