Loading…
Homing in the arachnid taxa Araneae and Amblypygi
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a ‘cognitive map’; or (c) use path integration (PI). Here, I review the state of the art...
Saved in:
Published in: | Animal cognition 2020-11, Vol.23 (6), p.1189-1204 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a ‘cognitive map’; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids’ navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated. |
---|---|
ISSN: | 1435-9448 1435-9456 |
DOI: | 10.1007/s10071-020-01424-w |