Loading…

Chronic heat stress affects the photosynthetic apparatus of Solanum lycopersicum L. cv Micro-Tom

Tomato (Solanum lycopersicum L.) is one of the most widely cultivated crops in the world. Tomato is a plant model and the relationship between yield and biotic/abiotic stress has attracted increasing scientific interest. Tomato cultivation under sub-optimal conditions usually negatively impacts grow...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology and biochemistry 2020-09, Vol.154, p.463-475
Main Authors: Parrotta, L., Aloisi, I., Faleri, C., Romi, M., Del Duca, S., Cai, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tomato (Solanum lycopersicum L.) is one of the most widely cultivated crops in the world. Tomato is a plant model and the relationship between yield and biotic/abiotic stress has attracted increasing scientific interest. Tomato cultivation under sub-optimal conditions usually negatively impacts growth and development; in particular, heat stress affects several cellular and metabolic processes, such as respiration and photosynthesis. In this work, we studied the effects of chronic heat stress on various cytological and biochemical aspects using the Micro-Tom cultivar as a model. Photosynthetic efficiency decreased during heat stress while levels of post-photosynthetic sugars (sucrose, fructose, glucose and glucose 6-phosphate) oscillated during stress. Similarly, photosynthetic pigments (lutein, chlorophyll a, chlorophyll b and β-carotene) showed an oscillating downward trend with partial recovery during the stress-free phase. The energetic capacity of leaves (e.g. ATP and ADP) was altered, as well as the reactive oxygen species (ROS) profile; the latter increased during stress. Important effects were also found on the accumulation of Rubisco isoforms, which decreased in number. Heat stress also resulted in a decreased accumulation of lipids (oleic and linoleic acid). Photosynthetically alterations were accompanied by cytological changes in leaf structure, particularly in the number of lipid bodies and starch granules. Prolonged heat stress progressively compromised the photosynthetic efficiency of tomato leaves. The present study reports multi-approach information on metabolic and photosynthetic injuries and responses of tomato plants to chronic heat stress, highlighting the plant's ability to adapt to stress. •Heat stress affects the photosynthetic apparatus of tomato plant.•Heat stress induces changes in ATP, ADP and sugar concentrations of tomato leaves.•Rubisco enzyme's isoforms are differently accumulated in tomato leaves during heat stress.•Heat stress causes morphological and histological variations in tomato leaves.•Abstract.
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2020.06.047