Loading…

Fabrication and characterization of lignin-xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property

Lignin nanospheres (LNPs) are an emerging high-value material platform to realize lignin valorization. The modification or introduction of new functions to LNPs is of great significance to expand its downstream applications. This work evaluated the technical feasibility of preparing lignin-xylan hyb...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2020-10, Vol.16 (39), p.983-993
Main Authors: Jiang, Yuehan, Chen, Yiyi, Tian, Dong, Shen, Feiyue, Wan, Xue, Xu, Lu, Chen, Yichu, Zhang, Haozhe, Hu, Jinguang, Shen, Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignin nanospheres (LNPs) are an emerging high-value material platform to realize lignin valorization. The modification or introduction of new functions to LNPs is of great significance to expand its downstream applications. This work evaluated the technical feasibility of preparing lignin-xylan hybrid nanospheres (LXNPs) through a simple solution-based self-assembly process, with the goal of achieving the application as pesticide carriers for enzyme-mediated controlled release. Hybrid LXNPs with various weigh ratios (lignin to xylan, 3 : 1, 1 : 1, 1 : 3) were obtained using deep eutectic solvent-extracted condensed lignin and water-insoluble xylan fragments, which exhibited a nanosphere size of about 166-210 nm with considerable stability in the pH range of 4-10. LXNPs with lignin to xylan ratios of 3 : 1 and 1 : 1 showed well-defined core-shell structures with enriched hydroxyl groups on the surface. It was proposed that lignin could anchor xylan fragments through van der Waals force and hydrophobic interactions between lignin phenylpropanes and xylan molecular backbones, thus facilitating the self-assembly process for the formation of this specific spherical structure. The resulting hydrophobic LXNPs core enabled the facile encapsulation of the biological pesticide avermectin (AVM) with 57.9-67.0% efficiency using one-pot synthesis. When these AVM-encapsulated LXNPs were subjected to enzymatic hydrolysis using xylanase, considerable AVM release of 44.8-55.1% was achieved after 16 h, in comparison to the 4.1% release only for those without xylanase. This work showed the high promise of fabricating hybrid LXNPs through the self-assembly process and also provided a universal nanosphere carrier for drug encapsulation and subsequent enzyme-mediated controlled release. Lignin-xylan hybrid nanospheres prepared by self-assembly is a smart material platform for pesticide encapsulation and enzyme-mediated release.
ISSN:1744-683X
1744-6848
DOI:10.1039/d0sm01402h