Loading…
Noncollinear Enhancement Cavity for Record-High Out-coupling Efficiency of an Extreme-UV Frequency Comb
We demonstrate a femtosecond enhancement cavity with a crossed-beam geometry for efficient generation and extraction of extreme-ultraviolet (XUV) frequency combs at a 154 MHz repetition rate. We achieve a record-high out-coupled power of 600 μW, directly usable for spectroscopy, at a wavelength of 9...
Saved in:
Published in: | Physical review letters 2020-08, Vol.125 (9), p.1-093902, Article 093902 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a femtosecond enhancement cavity with a crossed-beam geometry for efficient generation and extraction of extreme-ultraviolet (XUV) frequency combs at a 154 MHz repetition rate. We achieve a record-high out-coupled power of 600 μW, directly usable for spectroscopy, at a wavelength of 97 nm. This corresponds to a >60% out-coupling efficiency. The XUV power scaling and generation efficiency are similar to that achieved with a single Gaussian-mode fundamental beam inside a collinear enhancement cavity. The noncollinear geometry also opens the door for the generation of isolated attosecond pulses at >100 MHz repetition rate. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.125.093902 |