Loading…
Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration
Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besi...
Saved in:
Published in: | Materials Science & Engineering C 2020-12, Vol.117, p.111327-111327, Article 111327 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323 |
container_end_page | 111327 |
container_issue | |
container_start_page | 111327 |
container_title | Materials Science & Engineering C |
container_volume | 117 |
creator | de Moura, Nayara Koba Martins, Eduardo Ferreira Oliveira, Rodrigo Luiz Moraes Saldanha de Brito Siqueira, Idália Aparecida Waltrick Machado, João Paulo Barros Esposito, Elisa Amaral, Suelen Simões de Vasconcellos, Luana Marotta Reis Passador, Fabio Roberto de Sousa Trichês, Eliandra |
description | Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3–11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
[Display omitted]
•Production of porous membranes of PLA with bioglass (BG) and carbon nanotube (CNT)•The controlled humidity technique promoted surface porosity in PLA membranes.•Results showed antimicrobial activity in the membranes with addition of CNT.•Biologic assays showed cell viability and activity of alkaline phosphatase.•The PLA/BG/CNT membranes can be applied to guided bone regeneration. |
doi_str_mv | 10.1016/j.msec.2020.111327 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2442597022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493120332458</els_id><sourcerecordid>2442597022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYM4OO3oH3AhATfjoto86pECN8PgY2BgFqPrkEpuijRVSZtUCb3xt3uLHl24cJXk8p1zDzmEvOFszxlvPxz2cwG7F0zggHMpumdkx1UnK8Z7_pzsWC9UVfeSX5KXpRwYa5XsxAtyKUXP-1bxHfn1eIqQx1CWYCl4D3ahyVPjXIgjHUIaJ1MKNdFRa_KQIo0mpmUdoFB8HNN0oteTsZvc2ODe4yintdAZ5iGbiJhPmY5rcOAo6oFmGAF3miWk-IpceDMVeP10XpHvnz99u_1a3T98ubu9ua9s3bClajroapDOy7ZhlmN6I0zP7dB41eKlVpIrwfrGt1ZwCYMdesHAegVGKinkFbk--x5z-rFCWfQcioVpwoSYVou6Fk3fMbGh7_5BD2nNEdMh1bC24RgCKXGmbE6lZPD6mMNs8klzprd29EFv7eitHX1uB0Vvn6zXYQb3V_KnDgQ-ngHAv_gZIOtiA0QLLmRsRrsU_uf_G3DjoLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450651365</pqid></control><display><type>article</type><title>Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration</title><source>ScienceDirect Journals</source><creator>de Moura, Nayara Koba ; Martins, Eduardo Ferreira ; Oliveira, Rodrigo Luiz Moraes Saldanha ; de Brito Siqueira, Idália Aparecida Waltrick ; Machado, João Paulo Barros ; Esposito, Elisa ; Amaral, Suelen Simões ; de Vasconcellos, Luana Marotta Reis ; Passador, Fabio Roberto ; de Sousa Trichês, Eliandra</creator><creatorcontrib>de Moura, Nayara Koba ; Martins, Eduardo Ferreira ; Oliveira, Rodrigo Luiz Moraes Saldanha ; de Brito Siqueira, Idália Aparecida Waltrick ; Machado, João Paulo Barros ; Esposito, Elisa ; Amaral, Suelen Simões ; de Vasconcellos, Luana Marotta Reis ; Passador, Fabio Roberto ; de Sousa Trichês, Eliandra</creatorcontrib><description>Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3–11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
[Display omitted]
•Production of porous membranes of PLA with bioglass (BG) and carbon nanotube (CNT)•The controlled humidity technique promoted surface porosity in PLA membranes.•Results showed antimicrobial activity in the membranes with addition of CNT.•Biologic assays showed cell viability and activity of alkaline phosphatase.•The PLA/BG/CNT membranes can be applied to guided bone regeneration.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2020.111327</identifier><identifier>PMID: 32919681</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agar diffusion test ; Antiinfectives and antibacterials ; Antimicrobial ; Antimicrobial activity ; Antimicrobial agents ; Biocompatibility ; Biodegradation ; Bioglass ; Biological activity ; Biomaterials ; Biomedical materials ; Bone growth ; Bone Regeneration ; Carbon nanotubes ; Cell differentiation ; Ceramics - pharmacology ; Composite materials ; Cytotoxicity ; Dentistry ; GBR ; Lactic Acid ; Materials science ; Mechanical properties ; Membranes ; Microbial activity ; Microorganisms ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon ; Osteoconduction ; Poly (lactic acid) ; Polyesters ; Polylactic acid ; Polymers ; Porosity ; Regeneration ; Regeneration (physiology) ; Synergistic effect</subject><ispartof>Materials Science & Engineering C, 2020-12, Vol.117, p.111327-111327, Article 111327</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323</citedby><cites>FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32919681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Moura, Nayara Koba</creatorcontrib><creatorcontrib>Martins, Eduardo Ferreira</creatorcontrib><creatorcontrib>Oliveira, Rodrigo Luiz Moraes Saldanha</creatorcontrib><creatorcontrib>de Brito Siqueira, Idália Aparecida Waltrick</creatorcontrib><creatorcontrib>Machado, João Paulo Barros</creatorcontrib><creatorcontrib>Esposito, Elisa</creatorcontrib><creatorcontrib>Amaral, Suelen Simões</creatorcontrib><creatorcontrib>de Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Passador, Fabio Roberto</creatorcontrib><creatorcontrib>de Sousa Trichês, Eliandra</creatorcontrib><title>Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3–11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
[Display omitted]
•Production of porous membranes of PLA with bioglass (BG) and carbon nanotube (CNT)•The controlled humidity technique promoted surface porosity in PLA membranes.•Results showed antimicrobial activity in the membranes with addition of CNT.•Biologic assays showed cell viability and activity of alkaline phosphatase.•The PLA/BG/CNT membranes can be applied to guided bone regeneration.</description><subject>Agar diffusion test</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone Regeneration</subject><subject>Carbon nanotubes</subject><subject>Cell differentiation</subject><subject>Ceramics - pharmacology</subject><subject>Composite materials</subject><subject>Cytotoxicity</subject><subject>Dentistry</subject><subject>GBR</subject><subject>Lactic Acid</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon</subject><subject>Osteoconduction</subject><subject>Poly (lactic acid)</subject><subject>Polyesters</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Synergistic effect</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhYM4OO3oH3AhATfjoto86pECN8PgY2BgFqPrkEpuijRVSZtUCb3xt3uLHl24cJXk8p1zDzmEvOFszxlvPxz2cwG7F0zggHMpumdkx1UnK8Z7_pzsWC9UVfeSX5KXpRwYa5XsxAtyKUXP-1bxHfn1eIqQx1CWYCl4D3ahyVPjXIgjHUIaJ1MKNdFRa_KQIo0mpmUdoFB8HNN0oteTsZvc2ODe4yintdAZ5iGbiJhPmY5rcOAo6oFmGAF3miWk-IpceDMVeP10XpHvnz99u_1a3T98ubu9ua9s3bClajroapDOy7ZhlmN6I0zP7dB41eKlVpIrwfrGt1ZwCYMdesHAegVGKinkFbk--x5z-rFCWfQcioVpwoSYVou6Fk3fMbGh7_5BD2nNEdMh1bC24RgCKXGmbE6lZPD6mMNs8klzprd29EFv7eitHX1uB0Vvn6zXYQb3V_KnDgQ-ngHAv_gZIOtiA0QLLmRsRrsU_uf_G3DjoLE</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>de Moura, Nayara Koba</creator><creator>Martins, Eduardo Ferreira</creator><creator>Oliveira, Rodrigo Luiz Moraes Saldanha</creator><creator>de Brito Siqueira, Idália Aparecida Waltrick</creator><creator>Machado, João Paulo Barros</creator><creator>Esposito, Elisa</creator><creator>Amaral, Suelen Simões</creator><creator>de Vasconcellos, Luana Marotta Reis</creator><creator>Passador, Fabio Roberto</creator><creator>de Sousa Trichês, Eliandra</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration</title><author>de Moura, Nayara Koba ; Martins, Eduardo Ferreira ; Oliveira, Rodrigo Luiz Moraes Saldanha ; de Brito Siqueira, Idália Aparecida Waltrick ; Machado, João Paulo Barros ; Esposito, Elisa ; Amaral, Suelen Simões ; de Vasconcellos, Luana Marotta Reis ; Passador, Fabio Roberto ; de Sousa Trichês, Eliandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agar diffusion test</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone Regeneration</topic><topic>Carbon nanotubes</topic><topic>Cell differentiation</topic><topic>Ceramics - pharmacology</topic><topic>Composite materials</topic><topic>Cytotoxicity</topic><topic>Dentistry</topic><topic>GBR</topic><topic>Lactic Acid</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon</topic><topic>Osteoconduction</topic><topic>Poly (lactic acid)</topic><topic>Polyesters</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Synergistic effect</topic><toplevel>online_resources</toplevel><creatorcontrib>de Moura, Nayara Koba</creatorcontrib><creatorcontrib>Martins, Eduardo Ferreira</creatorcontrib><creatorcontrib>Oliveira, Rodrigo Luiz Moraes Saldanha</creatorcontrib><creatorcontrib>de Brito Siqueira, Idália Aparecida Waltrick</creatorcontrib><creatorcontrib>Machado, João Paulo Barros</creatorcontrib><creatorcontrib>Esposito, Elisa</creatorcontrib><creatorcontrib>Amaral, Suelen Simões</creatorcontrib><creatorcontrib>de Vasconcellos, Luana Marotta Reis</creatorcontrib><creatorcontrib>Passador, Fabio Roberto</creatorcontrib><creatorcontrib>de Sousa Trichês, Eliandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Moura, Nayara Koba</au><au>Martins, Eduardo Ferreira</au><au>Oliveira, Rodrigo Luiz Moraes Saldanha</au><au>de Brito Siqueira, Idália Aparecida Waltrick</au><au>Machado, João Paulo Barros</au><au>Esposito, Elisa</au><au>Amaral, Suelen Simões</au><au>de Vasconcellos, Luana Marotta Reis</au><au>Passador, Fabio Roberto</au><au>de Sousa Trichês, Eliandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-12</date><risdate>2020</risdate><volume>117</volume><spage>111327</spage><epage>111327</epage><pages>111327-111327</pages><artnum>111327</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3–11 μm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.
[Display omitted]
•Production of porous membranes of PLA with bioglass (BG) and carbon nanotube (CNT)•The controlled humidity technique promoted surface porosity in PLA membranes.•Results showed antimicrobial activity in the membranes with addition of CNT.•Biologic assays showed cell viability and activity of alkaline phosphatase.•The PLA/BG/CNT membranes can be applied to guided bone regeneration.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32919681</pmid><doi>10.1016/j.msec.2020.111327</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2020-12, Vol.117, p.111327-111327, Article 111327 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_2442597022 |
source | ScienceDirect Journals |
subjects | Agar diffusion test Antiinfectives and antibacterials Antimicrobial Antimicrobial activity Antimicrobial agents Biocompatibility Biodegradation Bioglass Biological activity Biomaterials Biomedical materials Bone growth Bone Regeneration Carbon nanotubes Cell differentiation Ceramics - pharmacology Composite materials Cytotoxicity Dentistry GBR Lactic Acid Materials science Mechanical properties Membranes Microbial activity Microorganisms Nanotechnology Nanotubes Nanotubes, Carbon Osteoconduction Poly (lactic acid) Polyesters Polylactic acid Polymers Porosity Regeneration Regeneration (physiology) Synergistic effect |
title | Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20adding%20bioglass%20and%20carbon%20nanotubes%20on%20poly%20(lactic%20acid)%20porous%20membranes%20for%20guided%20bone%20regeneration&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=de%20Moura,%20Nayara%20Koba&rft.date=2020-12&rft.volume=117&rft.spage=111327&rft.epage=111327&rft.pages=111327-111327&rft.artnum=111327&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2020.111327&rft_dat=%3Cproquest_cross%3E2442597022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-57e74e3df3650c1291a2a91cb5f86a91483182095f6c213ebcb920ecf8ea38323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2450651365&rft_id=info:pmid/32919681&rfr_iscdi=true |