Loading…

Interfacial Properties of Chitosan in Interfacial Shear and Capsule Compression

The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or durin...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-10, Vol.12 (42), p.48084-48092
Main Authors: Biviano, Matthew D, Böni, Lukas J, Berry, Joseph D, Fischer, Peter, Dagastine, Raymond R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or during final application. We explore the behavior of chitosan, a known hydrophilic emulsifier, which forms nanoparticle aggregates when the concentration of acetate buffer exceeds 0.3 M. We observe a Pickering adsorption layer building and strain-dependent behavior of the chitosan at the medium chain triglyceride oil/water interface. We compare this to the behavior of identical chitosan layers coated on oil droplets via atomic force microscopy colloidal probe compression in both linear and oscillatory compressions. In both interfacial shear rheometry and the capsule compression, a thick, elastic layer with strong time-dependent recovery behavior is observed, suggesting that the layer has some self-healing capabilities.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c11781