Loading…

Open-to-Air RAFT Polymerization on a Surface under Ambient Conditions

Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surf...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2020-10, Vol.36 (39), p.11538-11545
Main Authors: Kim, Chung Soo, Cho, Soojeong, Lee, Ji Hoon, Cho, Woo Kyung, Son, Kyung-sun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surface-initiated reversible addition fragmentation chain-transfer (O2-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O2-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions. Various monomers including (meth)­acrylates and acrylamides were employed for O2-SI-RAFT polymerization; the method is thus versatile in terms of the polymers used for coating and functionalization. A wide range of hydrophilic and hydrophobic monomers can be employed. In addition, the end-group functionality of the polymer grown by O2-SI-RAFT polymerization allowed chain extension to form block copolymer brushes on a surface.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c01947