Loading…
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentia...
Saved in:
Published in: | Acta oncologica 2020-12, Vol.59 (12), p.1455-1460 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. However, processing this rich resource of data for clinical and research purposes, depends on labor-intensive and potentially error-prone manual review. The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.
Bone scintigraphy reports of patients undergoing surgery for bone metastases were labeled each by three independent reviewers using a binary classification (single metastasis versus two or more metastases) to establish a ground truth. A stratified 80:20 split was used to develop and test an extreme-gradient boosting supervised machine learning NLP algorithm.
A total of 704 free-text bone scintigraphy reports from 704 patients were included in this study and 617 (88%) had multiple bone metastases. In the independent test set (n = 141) not used for model development, the NLP algorithm achieved an 0.97 AUC-ROC (95% confidence interval [CI], 0.92-0.99) for classification of multiple bone metastases and an 0.99 AUC-PRC (95% CI, 0.99-0.99). At a threshold of 0.90, NLP algorithm correctly identified multiple bone metastases in 117 of the 124 who had multiple bone metastases in the testing cohort (sensitivity 0.94) and yielded 3 false positives (specificity 0.82). At the same threshold, the NLP algorithm had a positive predictive value of 0.97 and F1-score of 0.96.
NLP has the potential to automate clinical data extraction from free text radiology notes in orthopedics, thereby optimizing the speed, accuracy, and consistency of clinical chart review. Pending external validation, the NLP algorithm developed in this study may be implemented as a means to aid researchers in tackling large amounts of data. |
---|---|
ISSN: | 0284-186X 1651-226X |
DOI: | 10.1080/0284186X.2020.1819563 |