Loading…

Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain

Purpose To define and weight the preoperative CT findings for ovarian torsion and to develop an integrated nomogram for estimating the probability of ovarian torsion in women with ovarian lesion and pelvic pain. Methods This retrospective study included 218 women with surgically resected ovarian les...

Full description

Saved in:
Bibliographic Details
Published in:Abdominal imaging 2021-03, Vol.46 (3), p.1137-1147
Main Authors: Hwang, Jeong Ah, Shin, Hyeong Cheol, Kim, Seung Soo, Heo, Nam Hun, Choi, Seo-Youn, Lee, Ji Eun, Lee, Sunyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743
cites cdi_FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743
container_end_page 1147
container_issue 3
container_start_page 1137
container_title Abdominal imaging
container_volume 46
creator Hwang, Jeong Ah
Shin, Hyeong Cheol
Kim, Seung Soo
Heo, Nam Hun
Choi, Seo-Youn
Lee, Ji Eun
Lee, Sunyoung
description Purpose To define and weight the preoperative CT findings for ovarian torsion and to develop an integrated nomogram for estimating the probability of ovarian torsion in women with ovarian lesion and pelvic pain. Methods This retrospective study included 218 women with surgically resected ovarian lesions who underwent preoperative contrast-enhanced CT for pelvic pain from January 2014 to February 2019. Significant imaging findings for torsion were extracted using regression analyses and a regression coefficient-based nomogram was constructed. The diagnostic performance with sensitivity, specificity, and accuracy of the significant imaging findings and the nomogram were assessed. Results A total of 255 ovarian lesions (123 lesions with torsion and 132 lesions without torsion) were evaluated. Multivariable regression analysis showed that whirl sign (odds ratio [OR] 11.000; p  
doi_str_mv 10.1007/s00261-020-02761-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2443515995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498798733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoNYbKn9A72QgDfejJ58TSaXsvgFBb1ooXchO3NmTZ1NxpzZLeKfN3XrCl4ICTnwPudNTl7GLgW8FgD2DQHIVjQgoW5bK_uEnUnVtg2A6Z4ea317yi6I7gBAtEYIaZ6xUyWdMtK4M_bzS8E8YwlL3CNfXfO4DRts1oFw4IEIibaYFj7mwpGWqi4xbXiJ9I3nked9KDEkvuRCMSceE7_PtYHfx-XrUZ3wQSQe0sBnnPax53OI6Tk7GcNEePF4nrOb9--uVx-bq88fPq3eXjW9smZpOm009G50rdISXBgA9SC16JQ0dRzTogy9DWEcQCqpxNhZXCs9DGNrnLRanbNXB9-55O-7OoXfRupxmkLCvCMvtVZGGOdMRV_-g97lXUn1dZVyna1LqUrJA9WXTFRw9HOpP1N-eAH-IR1_SMfXdPzvdLytTS8erXfrLQ7Hlj9ZVEAdAKpS2mD5e_d_bH8BC-eaRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498798733</pqid></control><display><type>article</type><title>Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain</title><source>Springer Link</source><creator>Hwang, Jeong Ah ; Shin, Hyeong Cheol ; Kim, Seung Soo ; Heo, Nam Hun ; Choi, Seo-Youn ; Lee, Ji Eun ; Lee, Sunyoung</creator><creatorcontrib>Hwang, Jeong Ah ; Shin, Hyeong Cheol ; Kim, Seung Soo ; Heo, Nam Hun ; Choi, Seo-Youn ; Lee, Ji Eun ; Lee, Sunyoung</creatorcontrib><description>Purpose To define and weight the preoperative CT findings for ovarian torsion and to develop an integrated nomogram for estimating the probability of ovarian torsion in women with ovarian lesion and pelvic pain. Methods This retrospective study included 218 women with surgically resected ovarian lesions who underwent preoperative contrast-enhanced CT for pelvic pain from January 2014 to February 2019. Significant imaging findings for torsion were extracted using regression analyses and a regression coefficient-based nomogram was constructed. The diagnostic performance with sensitivity, specificity, and accuracy of the significant imaging findings and the nomogram were assessed. Results A total of 255 ovarian lesions (123 lesions with torsion and 132 lesions without torsion) were evaluated. Multivariable regression analysis showed that whirl sign (odds ratio [OR] 11.000; p  &lt; 0.001), tubal thickening (OR 4.621; p  = 0.001), unusual location of ovarian lesion (OR 2.712; p  = 0.020), and hemorrhagic component within adnexal lesion (OR 2.537; p  = 0.028) were independent significant parameters predicting ovarian torsion. Tubal thickening showed the highest sensitivity (91.1%) and whirl sign showed the highest specificity (94.7%). When probabilities of ovarian torsion of 0.5 or more in the nomogram were diagnosed as ovarian torsion, sensitivity, specificity, and accuracy of the nomogram were 78.1%, 91.7%, and 85.1%, respectively. Conclusion The whirl sign, tubal thickening, unusual location of ovarian lesion, and hemorrhagic component within adnexal lesion, and an integrated nomogram derived from these significant findings can be useful for predicting ovarian torsion.</description><identifier>ISSN: 2366-004X</identifier><identifier>EISSN: 2366-0058</identifier><identifier>DOI: 10.1007/s00261-020-02761-7</identifier><identifier>PMID: 32935259</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computed tomography ; Estimation ; Gastroenterology ; Hemorrhage ; Hepatology ; Imaging ; Lesions ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Nomograms ; Ovarian cancer ; Ovaries ; Pain ; Parameter sensitivity ; Pelvis ; Radiology ; Regression analysis ; Regression coefficients ; Sensitivity ; Statistical analysis ; Thickening ; Womens health</subject><ispartof>Abdominal imaging, 2021-03, Vol.46 (3), p.1137-1147</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743</citedby><cites>FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743</cites><orcidid>0000-0002-6612-0756 ; 0000-0001-7278-2214 ; 0000-0002-1763-8217 ; 0000-0002-6893-3136 ; 0000-0002-8012-995X ; 0000-0002-4442-4441 ; 0000-0002-2434-8779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32935259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Jeong Ah</creatorcontrib><creatorcontrib>Shin, Hyeong Cheol</creatorcontrib><creatorcontrib>Kim, Seung Soo</creatorcontrib><creatorcontrib>Heo, Nam Hun</creatorcontrib><creatorcontrib>Choi, Seo-Youn</creatorcontrib><creatorcontrib>Lee, Ji Eun</creatorcontrib><creatorcontrib>Lee, Sunyoung</creatorcontrib><title>Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain</title><title>Abdominal imaging</title><addtitle>Abdom Radiol</addtitle><addtitle>Abdom Radiol (NY)</addtitle><description>Purpose To define and weight the preoperative CT findings for ovarian torsion and to develop an integrated nomogram for estimating the probability of ovarian torsion in women with ovarian lesion and pelvic pain. Methods This retrospective study included 218 women with surgically resected ovarian lesions who underwent preoperative contrast-enhanced CT for pelvic pain from January 2014 to February 2019. Significant imaging findings for torsion were extracted using regression analyses and a regression coefficient-based nomogram was constructed. The diagnostic performance with sensitivity, specificity, and accuracy of the significant imaging findings and the nomogram were assessed. Results A total of 255 ovarian lesions (123 lesions with torsion and 132 lesions without torsion) were evaluated. Multivariable regression analysis showed that whirl sign (odds ratio [OR] 11.000; p  &lt; 0.001), tubal thickening (OR 4.621; p  = 0.001), unusual location of ovarian lesion (OR 2.712; p  = 0.020), and hemorrhagic component within adnexal lesion (OR 2.537; p  = 0.028) were independent significant parameters predicting ovarian torsion. Tubal thickening showed the highest sensitivity (91.1%) and whirl sign showed the highest specificity (94.7%). When probabilities of ovarian torsion of 0.5 or more in the nomogram were diagnosed as ovarian torsion, sensitivity, specificity, and accuracy of the nomogram were 78.1%, 91.7%, and 85.1%, respectively. Conclusion The whirl sign, tubal thickening, unusual location of ovarian lesion, and hemorrhagic component within adnexal lesion, and an integrated nomogram derived from these significant findings can be useful for predicting ovarian torsion.</description><subject>Computed tomography</subject><subject>Estimation</subject><subject>Gastroenterology</subject><subject>Hemorrhage</subject><subject>Hepatology</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nomograms</subject><subject>Ovarian cancer</subject><subject>Ovaries</subject><subject>Pain</subject><subject>Parameter sensitivity</subject><subject>Pelvis</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><subject>Thickening</subject><subject>Womens health</subject><issn>2366-004X</issn><issn>2366-0058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEUhoNYbKn9A72QgDfejJ58TSaXsvgFBb1ooXchO3NmTZ1NxpzZLeKfN3XrCl4ICTnwPudNTl7GLgW8FgD2DQHIVjQgoW5bK_uEnUnVtg2A6Z4ea317yi6I7gBAtEYIaZ6xUyWdMtK4M_bzS8E8YwlL3CNfXfO4DRts1oFw4IEIibaYFj7mwpGWqi4xbXiJ9I3nked9KDEkvuRCMSceE7_PtYHfx-XrUZ3wQSQe0sBnnPax53OI6Tk7GcNEePF4nrOb9--uVx-bq88fPq3eXjW9smZpOm009G50rdISXBgA9SC16JQ0dRzTogy9DWEcQCqpxNhZXCs9DGNrnLRanbNXB9-55O-7OoXfRupxmkLCvCMvtVZGGOdMRV_-g97lXUn1dZVyna1LqUrJA9WXTFRw9HOpP1N-eAH-IR1_SMfXdPzvdLytTS8erXfrLQ7Hlj9ZVEAdAKpS2mD5e_d_bH8BC-eaRg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Hwang, Jeong Ah</creator><creator>Shin, Hyeong Cheol</creator><creator>Kim, Seung Soo</creator><creator>Heo, Nam Hun</creator><creator>Choi, Seo-Youn</creator><creator>Lee, Ji Eun</creator><creator>Lee, Sunyoung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6612-0756</orcidid><orcidid>https://orcid.org/0000-0001-7278-2214</orcidid><orcidid>https://orcid.org/0000-0002-1763-8217</orcidid><orcidid>https://orcid.org/0000-0002-6893-3136</orcidid><orcidid>https://orcid.org/0000-0002-8012-995X</orcidid><orcidid>https://orcid.org/0000-0002-4442-4441</orcidid><orcidid>https://orcid.org/0000-0002-2434-8779</orcidid></search><sort><creationdate>20210301</creationdate><title>Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain</title><author>Hwang, Jeong Ah ; Shin, Hyeong Cheol ; Kim, Seung Soo ; Heo, Nam Hun ; Choi, Seo-Youn ; Lee, Ji Eun ; Lee, Sunyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computed tomography</topic><topic>Estimation</topic><topic>Gastroenterology</topic><topic>Hemorrhage</topic><topic>Hepatology</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nomograms</topic><topic>Ovarian cancer</topic><topic>Ovaries</topic><topic>Pain</topic><topic>Parameter sensitivity</topic><topic>Pelvis</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><topic>Thickening</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jeong Ah</creatorcontrib><creatorcontrib>Shin, Hyeong Cheol</creatorcontrib><creatorcontrib>Kim, Seung Soo</creatorcontrib><creatorcontrib>Heo, Nam Hun</creatorcontrib><creatorcontrib>Choi, Seo-Youn</creatorcontrib><creatorcontrib>Lee, Ji Eun</creatorcontrib><creatorcontrib>Lee, Sunyoung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Abdominal imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jeong Ah</au><au>Shin, Hyeong Cheol</au><au>Kim, Seung Soo</au><au>Heo, Nam Hun</au><au>Choi, Seo-Youn</au><au>Lee, Ji Eun</au><au>Lee, Sunyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain</atitle><jtitle>Abdominal imaging</jtitle><stitle>Abdom Radiol</stitle><addtitle>Abdom Radiol (NY)</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>46</volume><issue>3</issue><spage>1137</spage><epage>1147</epage><pages>1137-1147</pages><issn>2366-004X</issn><eissn>2366-0058</eissn><abstract>Purpose To define and weight the preoperative CT findings for ovarian torsion and to develop an integrated nomogram for estimating the probability of ovarian torsion in women with ovarian lesion and pelvic pain. Methods This retrospective study included 218 women with surgically resected ovarian lesions who underwent preoperative contrast-enhanced CT for pelvic pain from January 2014 to February 2019. Significant imaging findings for torsion were extracted using regression analyses and a regression coefficient-based nomogram was constructed. The diagnostic performance with sensitivity, specificity, and accuracy of the significant imaging findings and the nomogram were assessed. Results A total of 255 ovarian lesions (123 lesions with torsion and 132 lesions without torsion) were evaluated. Multivariable regression analysis showed that whirl sign (odds ratio [OR] 11.000; p  &lt; 0.001), tubal thickening (OR 4.621; p  = 0.001), unusual location of ovarian lesion (OR 2.712; p  = 0.020), and hemorrhagic component within adnexal lesion (OR 2.537; p  = 0.028) were independent significant parameters predicting ovarian torsion. Tubal thickening showed the highest sensitivity (91.1%) and whirl sign showed the highest specificity (94.7%). When probabilities of ovarian torsion of 0.5 or more in the nomogram were diagnosed as ovarian torsion, sensitivity, specificity, and accuracy of the nomogram were 78.1%, 91.7%, and 85.1%, respectively. Conclusion The whirl sign, tubal thickening, unusual location of ovarian lesion, and hemorrhagic component within adnexal lesion, and an integrated nomogram derived from these significant findings can be useful for predicting ovarian torsion.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32935259</pmid><doi>10.1007/s00261-020-02761-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6612-0756</orcidid><orcidid>https://orcid.org/0000-0001-7278-2214</orcidid><orcidid>https://orcid.org/0000-0002-1763-8217</orcidid><orcidid>https://orcid.org/0000-0002-6893-3136</orcidid><orcidid>https://orcid.org/0000-0002-8012-995X</orcidid><orcidid>https://orcid.org/0000-0002-4442-4441</orcidid><orcidid>https://orcid.org/0000-0002-2434-8779</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2366-004X
ispartof Abdominal imaging, 2021-03, Vol.46 (3), p.1137-1147
issn 2366-004X
2366-0058
language eng
recordid cdi_proquest_miscellaneous_2443515995
source Springer Link
subjects Computed tomography
Estimation
Gastroenterology
Hemorrhage
Hepatology
Imaging
Lesions
Medical imaging
Medicine
Medicine & Public Health
Nomograms
Ovarian cancer
Ovaries
Pain
Parameter sensitivity
Pelvis
Radiology
Regression analysis
Regression coefficients
Sensitivity
Statistical analysis
Thickening
Womens health
title Preoperative CT image-based assessment for estimating risk of ovarian torsion in women with ovarian lesions and pelvic pain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preoperative%20CT%20image-based%20assessment%20for%20estimating%20risk%20of%20ovarian%20torsion%20in%20women%20with%20ovarian%20lesions%20and%20pelvic%20pain&rft.jtitle=Abdominal%20imaging&rft.au=Hwang,%20Jeong%20Ah&rft.date=2021-03-01&rft.volume=46&rft.issue=3&rft.spage=1137&rft.epage=1147&rft.pages=1137-1147&rft.issn=2366-004X&rft.eissn=2366-0058&rft_id=info:doi/10.1007/s00261-020-02761-7&rft_dat=%3Cproquest_cross%3E2498798733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-84540c9f9634209ad0e4d241832512556e2ac7aafd023231f87eb34ddf6592743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498798733&rft_id=info:pmid/32935259&rfr_iscdi=true