Loading…
Electrofluorochromic Device Based on a Redox-Active Europium(III) Complex
Electrofluorochromism owing to redox reactions on the center europium (Eu) ion in ionic liquids is examined for the helicate complexes (abbreviated as EuL) with a hexadentate pyridine derivative. Typical electrofluorochromism requires extra electroactive units complementing intra- or intermolecular...
Saved in:
Published in: | ACS applied materials & interfaces 2020-10, Vol.12 (41), p.46390-46396 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrofluorochromism owing to redox reactions on the center europium (Eu) ion in ionic liquids is examined for the helicate complexes (abbreviated as EuL) with a hexadentate pyridine derivative. Typical electrofluorochromism requires extra electroactive units complementing intra- or intermolecular energy transfer to quench fluorophores. Herein, an unprecedentedly simplified electrofluorochromic system overcoming such issues is demonstrated by utilizing reversible electrochemistry of EuL between Eu3+ and Eu2+, which accompanies large emission transition. A three-electrode electrochemical switching device is facilely prepared with an ionic liquid [BMIM][PF6] and EuL mixture. Benefiting from the stable helical coordinated structure of the ligand in [BMIM][PF6], highly enhanced red fluorescence of EuL with small quantity (≤1 wt %) is utilized. Rapid response and large contrast of luminescence are achieved: the emission is drastically quenched at the reduced state (Eu2+) and it is successfully restored by subsequent oxidation (Eu3+). The reversible fluctuation of excitation and emission spectra of an electrofluorochromic device is achieved in the potential window within ±2 V. The device affords excellent optoelectric properties in terms of well-controlled luminescence switching depending on the applied potentials and its durability. This work paves an efficient and smart way toward Eu luminescence control in optoelectronic devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c13765 |