Loading…

Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics

Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high‐efficiency perovskite solar cells. Among those inorganic perovs...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-11, Vol.32 (45), p.e2001025-n/a
Main Authors: Wang, Yong, Chen, Yuetian, Zhang, Taiyang, Wang, Xingtao, Zhao, Yixin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 45
container_start_page e2001025
container_title Advanced materials (Weinheim)
container_volume 32
creator Wang, Yong
Chen, Yuetian
Zhang, Taiyang
Wang, Xingtao
Zhao, Yixin
description Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high‐efficiency perovskite solar cells. Among those inorganic perovskites, CsPbI3 with good chemical components stability possesses the suitable bandgap (≈1.7 eV) for single‐junction and tandem solar cells. Comparing to the anisotropic organic cations, the isotropic cesium cation without hydrogen bond and cation orientation renders CsPbI3 exhibit unique optoelectronic properties. However, the unideal tolerance factor of CsPbI3 induces the challenges of different crystal phase competition and room temperature phase stability. Herein, the latest important developments regarding understanding of the crystal structure and phase of CsPbI3 perovskite are presented. The development of various solution chemistry approaches for depositing high‐quality phase‐pure CsPbI3 perovskite is summarized. Furthermore, some important phase stabilization strategies for black phase CsPbI3 are discussed. The latest experimental and theoretical studies on the fundamental physical properties of photoactive phase CsPbI3 have deepened the understanding of inorganic perovskites. The future development and research directions toward achieving highly stable CsPbI3 materials will further advance inorganic perovskite for highly stable and efficient photovoltaics. The recent progress of CsPbI3 perovskite for highly efficient and stable photovoltaics is summarized. Furthermore, those important phase stabilization strategies for black‐phase CsPbI3 are also discussed. With the advancing of fundamental studies on CsPbI3 perovskite material properties, the CsPbI3 perovskite and other inorganic perovskites will become more and more promising for high‐efficiency and stable perovskite solar cells.
doi_str_mv 10.1002/adma.202001025
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2445424234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458902474</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2205-7f9c1f9e005c23eab3ee8f04aeb52c9ccfd31b085ccec6d42870cb6e0250b3a13</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGExG9em7ixUtx9qt0j4goJBhJ1KvNdpnCwtLFbsFw8yf4G_0llmg4eJq8yTOTdx5CLil0KAC70dOV7jBgABSYPCItKhmNBSh5TFqguIxVItJTchbCAgBUAkmLvPXnuLJGO7eLnmudO4xunTbLaDLXAaN-mOQjHo1KX810aU00wcpvw9LWGKLCV9HQzubfn1-DorDGYml2zaKv_da7WlsTzslJoV3Ai7_ZJq_3g5f-MB4_PYz6vXE8Ywxk3C2UoYVCAGkYR51zxLQAoTGXzChjiimnOaTSGDTJVLC0CyZPsPkTcq4pb5Pr37vryr9vMNTZygaDzukS_SZkTAgpmGBcNOjVP3ThN1XZtGsomSpgorun1C_1YR3usnVlV7raZRSyvets7zo7uM56d4-9Q-I_TyV2DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458902474</pqid></control><display><type>article</type><title>Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Yong ; Chen, Yuetian ; Zhang, Taiyang ; Wang, Xingtao ; Zhao, Yixin</creator><creatorcontrib>Wang, Yong ; Chen, Yuetian ; Zhang, Taiyang ; Wang, Xingtao ; Zhao, Yixin</creatorcontrib><description>Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high‐efficiency perovskite solar cells. Among those inorganic perovskites, CsPbI3 with good chemical components stability possesses the suitable bandgap (≈1.7 eV) for single‐junction and tandem solar cells. Comparing to the anisotropic organic cations, the isotropic cesium cation without hydrogen bond and cation orientation renders CsPbI3 exhibit unique optoelectronic properties. However, the unideal tolerance factor of CsPbI3 induces the challenges of different crystal phase competition and room temperature phase stability. Herein, the latest important developments regarding understanding of the crystal structure and phase of CsPbI3 perovskite are presented. The development of various solution chemistry approaches for depositing high‐quality phase‐pure CsPbI3 perovskite is summarized. Furthermore, some important phase stabilization strategies for black phase CsPbI3 are discussed. The latest experimental and theoretical studies on the fundamental physical properties of photoactive phase CsPbI3 have deepened the understanding of inorganic perovskites. The future development and research directions toward achieving highly stable CsPbI3 materials will further advance inorganic perovskite for highly stable and efficient photovoltaics. The recent progress of CsPbI3 perovskite for highly efficient and stable photovoltaics is summarized. Furthermore, those important phase stabilization strategies for black‐phase CsPbI3 are also discussed. With the advancing of fundamental studies on CsPbI3 perovskite material properties, the CsPbI3 perovskite and other inorganic perovskites will become more and more promising for high‐efficiency and stable perovskite solar cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202001025</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cations ; Cesium ; Crystal structure ; CsPbI 3 ; Efficiency ; Hydrogen bonds ; inorganic perovskite ; Materials science ; Optoelectronics ; perovskite solar cell ; Perovskites ; Phase stability ; Photovoltaic cells ; Physical properties ; Room temperature ; Solar cells ; stability</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (45), p.e2001025-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8663-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Chen, Yuetian</creatorcontrib><creatorcontrib>Zhang, Taiyang</creatorcontrib><creatorcontrib>Wang, Xingtao</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><title>Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics</title><title>Advanced materials (Weinheim)</title><description>Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high‐efficiency perovskite solar cells. Among those inorganic perovskites, CsPbI3 with good chemical components stability possesses the suitable bandgap (≈1.7 eV) for single‐junction and tandem solar cells. Comparing to the anisotropic organic cations, the isotropic cesium cation without hydrogen bond and cation orientation renders CsPbI3 exhibit unique optoelectronic properties. However, the unideal tolerance factor of CsPbI3 induces the challenges of different crystal phase competition and room temperature phase stability. Herein, the latest important developments regarding understanding of the crystal structure and phase of CsPbI3 perovskite are presented. The development of various solution chemistry approaches for depositing high‐quality phase‐pure CsPbI3 perovskite is summarized. Furthermore, some important phase stabilization strategies for black phase CsPbI3 are discussed. The latest experimental and theoretical studies on the fundamental physical properties of photoactive phase CsPbI3 have deepened the understanding of inorganic perovskites. The future development and research directions toward achieving highly stable CsPbI3 materials will further advance inorganic perovskite for highly stable and efficient photovoltaics. The recent progress of CsPbI3 perovskite for highly efficient and stable photovoltaics is summarized. Furthermore, those important phase stabilization strategies for black‐phase CsPbI3 are also discussed. With the advancing of fundamental studies on CsPbI3 perovskite material properties, the CsPbI3 perovskite and other inorganic perovskites will become more and more promising for high‐efficiency and stable perovskite solar cells.</description><subject>Cations</subject><subject>Cesium</subject><subject>Crystal structure</subject><subject>CsPbI 3</subject><subject>Efficiency</subject><subject>Hydrogen bonds</subject><subject>inorganic perovskite</subject><subject>Materials science</subject><subject>Optoelectronics</subject><subject>perovskite solar cell</subject><subject>Perovskites</subject><subject>Phase stability</subject><subject>Photovoltaic cells</subject><subject>Physical properties</subject><subject>Room temperature</subject><subject>Solar cells</subject><subject>stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwkAQhjdGExG9em7ixUtx9qt0j4goJBhJ1KvNdpnCwtLFbsFw8yf4G_0llmg4eJq8yTOTdx5CLil0KAC70dOV7jBgABSYPCItKhmNBSh5TFqguIxVItJTchbCAgBUAkmLvPXnuLJGO7eLnmudO4xunTbLaDLXAaN-mOQjHo1KX810aU00wcpvw9LWGKLCV9HQzubfn1-DorDGYml2zaKv_da7WlsTzslJoV3Ai7_ZJq_3g5f-MB4_PYz6vXE8Ywxk3C2UoYVCAGkYR51zxLQAoTGXzChjiimnOaTSGDTJVLC0CyZPsPkTcq4pb5Pr37vryr9vMNTZygaDzukS_SZkTAgpmGBcNOjVP3ThN1XZtGsomSpgorun1C_1YR3usnVlV7raZRSyvets7zo7uM56d4-9Q-I_TyV2DQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Wang, Yong</creator><creator>Chen, Yuetian</creator><creator>Zhang, Taiyang</creator><creator>Wang, Xingtao</creator><creator>Zhao, Yixin</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></search><sort><creationdate>20201101</creationdate><title>Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics</title><author>Wang, Yong ; Chen, Yuetian ; Zhang, Taiyang ; Wang, Xingtao ; Zhao, Yixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2205-7f9c1f9e005c23eab3ee8f04aeb52c9ccfd31b085ccec6d42870cb6e0250b3a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cations</topic><topic>Cesium</topic><topic>Crystal structure</topic><topic>CsPbI 3</topic><topic>Efficiency</topic><topic>Hydrogen bonds</topic><topic>inorganic perovskite</topic><topic>Materials science</topic><topic>Optoelectronics</topic><topic>perovskite solar cell</topic><topic>Perovskites</topic><topic>Phase stability</topic><topic>Photovoltaic cells</topic><topic>Physical properties</topic><topic>Room temperature</topic><topic>Solar cells</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Chen, Yuetian</creatorcontrib><creatorcontrib>Zhang, Taiyang</creatorcontrib><creatorcontrib>Wang, Xingtao</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yong</au><au>Chen, Yuetian</au><au>Zhang, Taiyang</au><au>Wang, Xingtao</au><au>Zhao, Yixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>45</issue><spage>e2001025</spage><epage>n/a</epage><pages>e2001025-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Research on chemically stable inorganic perovskites has achieved rapid progress in terms of high efficiency exceeding 19% and high thermal stabilities, making it one of the most promising candidates for thermodynamically stable and high‐efficiency perovskite solar cells. Among those inorganic perovskites, CsPbI3 with good chemical components stability possesses the suitable bandgap (≈1.7 eV) for single‐junction and tandem solar cells. Comparing to the anisotropic organic cations, the isotropic cesium cation without hydrogen bond and cation orientation renders CsPbI3 exhibit unique optoelectronic properties. However, the unideal tolerance factor of CsPbI3 induces the challenges of different crystal phase competition and room temperature phase stability. Herein, the latest important developments regarding understanding of the crystal structure and phase of CsPbI3 perovskite are presented. The development of various solution chemistry approaches for depositing high‐quality phase‐pure CsPbI3 perovskite is summarized. Furthermore, some important phase stabilization strategies for black phase CsPbI3 are discussed. The latest experimental and theoretical studies on the fundamental physical properties of photoactive phase CsPbI3 have deepened the understanding of inorganic perovskites. The future development and research directions toward achieving highly stable CsPbI3 materials will further advance inorganic perovskite for highly stable and efficient photovoltaics. The recent progress of CsPbI3 perovskite for highly efficient and stable photovoltaics is summarized. Furthermore, those important phase stabilization strategies for black‐phase CsPbI3 are also discussed. With the advancing of fundamental studies on CsPbI3 perovskite material properties, the CsPbI3 perovskite and other inorganic perovskites will become more and more promising for high‐efficiency and stable perovskite solar cells.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202001025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-11, Vol.32 (45), p.e2001025-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2445424234
source Wiley-Blackwell Read & Publish Collection
subjects Cations
Cesium
Crystal structure
CsPbI 3
Efficiency
Hydrogen bonds
inorganic perovskite
Materials science
Optoelectronics
perovskite solar cell
Perovskites
Phase stability
Photovoltaic cells
Physical properties
Room temperature
Solar cells
stability
title Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High‐Efficiency Photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Stable%20Black%20Phase%20CsPbI3%20Inorganic%20Perovskites%20for%20High%E2%80%90Efficiency%20Photovoltaics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Yong&rft.date=2020-11-01&rft.volume=32&rft.issue=45&rft.spage=e2001025&rft.epage=n/a&rft.pages=e2001025-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202001025&rft_dat=%3Cproquest_wiley%3E2458902474%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2205-7f9c1f9e005c23eab3ee8f04aeb52c9ccfd31b085ccec6d42870cb6e0250b3a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458902474&rft_id=info:pmid/&rfr_iscdi=true