Loading…

Electron Momentum Spectroscopy Study on the Valence Electronic Structure of Dimethyl Sulfide Considering Vibrational Effects

We report an electron momentum spectroscopy study on the valence electronic structure of dimethyl sulfide. The binding energy and electron momentum profiles are measured using a high-sensitivity (e, 2e) apparatus employing a symmetric non-coplanar geometry at an incident energy of 1200 eV plus bindi...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-10, Vol.124 (41), p.8551-8561
Main Authors: Liu, ZhaoHui, Tang, YaGuo, Niu, ShanShan, Shan, Xu, Xu, ChunKai, Chen, XiangJun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report an electron momentum spectroscopy study on the valence electronic structure of dimethyl sulfide. The binding energy and electron momentum profiles are measured using a high-sensitivity (e, 2e) apparatus employing a symmetric non-coplanar geometry at an incident energy of 1200 eV plus binding energy. The measurements are compared with the theoretical calculations by density functional theory performed both at equilibrium molecular geometry and by considering vibrational effects through a harmonic analytical quantum mechanical approach. The results demonstrate a significant influence of nuclear vibrational motions on the momentum profiles for valence orbitals of dimethyl sulfide, especially for 5b2, 1a2, and 4b2. A detailed analysis shows that the observed vibrational effects come mainly from vibrational normal modes breaking the mirror symmetry of (CH3)2S with respect to a plane perpendicular to the O–S–O plane.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.0c07438