Loading…
Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles
The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical proper...
Saved in:
Published in: | Soft matter 2020-11, Vol.16 (43), p.9844-9856 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43 |
container_end_page | 9856 |
container_issue | 43 |
container_start_page | 9844 |
container_title | Soft matter |
container_volume | 16 |
creator | Liu, Yanan Zografos, Konstantinos Fidalgo, Joana Duchêne, Charles Quintard, Clément Darnige, Thierry Filipe, Vasco Huille, Sylvain du Roure, Olivia Oliveira, Mónica S. N Lindner, Anke |
description | The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics. |
doi_str_mv | 10.1039/d0sm01293a |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447541707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447541707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7pxbtQ8KJCNWl-tDmO-WPCZAcVvYUkTWkkbWrSCfvvzaxM8JTHy4eQ975JcgrBNQSI3VQgtADmDIm9ZAILjDNa4nJ_V6P3w-QohA8AUIkhnSRvq34wrQm6SptNr7101qi0Nco71Yiu0zaktfPp0Oi01duWUcKmsfBCDdqbIAbjutTVqTQu64UfjLI6HCcHtbBBn_ye0-T1_u5lvsiWq4fH-WyZKUzzIauJrEiuClooRhnTZVlhWiBWUQkkjBcSoFxVJRQYMihVLkjOsCZESVmTCqNpcjm-2wjLe29a4TfcCcMXsyXf9gDCCBLKvmC0F6Ptvftc6zDwOLjS1opOu3XgOcYFwbAARaTn_-iHW_suThIVYTgHJaJRXY0qbisEr-vdDyDg2zz4LXh--sljFvHZiH1QO_eXF_oGKGiG8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459420836</pqid></control><display><type>article</type><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><source>Royal Society of Chemistry</source><creator>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</creator><creatorcontrib>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</creatorcontrib><description>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01293a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Actin ; Algorithms ; Biological properties ; Biomechanics ; Compression ; Compression tests ; Condensed Matter ; Deoxyribonucleic acid ; Design optimization ; DNA ; Elongation ; Filaments ; Fluid mechanics ; Image quality ; Mechanical properties ; Mechanics ; Microchannels ; Microfluidic devices ; Microfluidics ; Particulates ; Physics ; Rheological properties ; Shear flow ; Soft Condensed Matter ; Strain rate ; Tracking ; Viscous flow</subject><ispartof>Soft matter, 2020-11, Vol.16 (43), p.9844-9856</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</citedby><cites>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</cites><orcidid>0000-0003-4202-5399 ; 0000-0001-5732-7803 ; 0000-0002-5007-9568 ; 0000-0002-6364-612X ; 0000-0002-7136-6777 ; 0000-0002-1836-4692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03431569$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Zografos, Konstantinos</creatorcontrib><creatorcontrib>Fidalgo, Joana</creatorcontrib><creatorcontrib>Duchêne, Charles</creatorcontrib><creatorcontrib>Quintard, Clément</creatorcontrib><creatorcontrib>Darnige, Thierry</creatorcontrib><creatorcontrib>Filipe, Vasco</creatorcontrib><creatorcontrib>Huille, Sylvain</creatorcontrib><creatorcontrib>du Roure, Olivia</creatorcontrib><creatorcontrib>Oliveira, Mónica S. N</creatorcontrib><creatorcontrib>Lindner, Anke</creatorcontrib><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><title>Soft matter</title><description>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</description><subject>Actin</subject><subject>Algorithms</subject><subject>Biological properties</subject><subject>Biomechanics</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Condensed Matter</subject><subject>Deoxyribonucleic acid</subject><subject>Design optimization</subject><subject>DNA</subject><subject>Elongation</subject><subject>Filaments</subject><subject>Fluid mechanics</subject><subject>Image quality</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Particulates</subject><subject>Physics</subject><subject>Rheological properties</subject><subject>Shear flow</subject><subject>Soft Condensed Matter</subject><subject>Strain rate</subject><subject>Tracking</subject><subject>Viscous flow</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7pxbtQ8KJCNWl-tDmO-WPCZAcVvYUkTWkkbWrSCfvvzaxM8JTHy4eQ975JcgrBNQSI3VQgtADmDIm9ZAILjDNa4nJ_V6P3w-QohA8AUIkhnSRvq34wrQm6SptNr7101qi0Nco71Yiu0zaktfPp0Oi01duWUcKmsfBCDdqbIAbjutTVqTQu64UfjLI6HCcHtbBBn_ye0-T1_u5lvsiWq4fH-WyZKUzzIauJrEiuClooRhnTZVlhWiBWUQkkjBcSoFxVJRQYMihVLkjOsCZESVmTCqNpcjm-2wjLe29a4TfcCcMXsyXf9gDCCBLKvmC0F6Ptvftc6zDwOLjS1opOu3XgOcYFwbAARaTn_-iHW_suThIVYTgHJaJRXY0qbisEr-vdDyDg2zz4LXh--sljFvHZiH1QO_eXF_oGKGiG8w</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Liu, Yanan</creator><creator>Zografos, Konstantinos</creator><creator>Fidalgo, Joana</creator><creator>Duchêne, Charles</creator><creator>Quintard, Clément</creator><creator>Darnige, Thierry</creator><creator>Filipe, Vasco</creator><creator>Huille, Sylvain</creator><creator>du Roure, Olivia</creator><creator>Oliveira, Mónica S. N</creator><creator>Lindner, Anke</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4202-5399</orcidid><orcidid>https://orcid.org/0000-0001-5732-7803</orcidid><orcidid>https://orcid.org/0000-0002-5007-9568</orcidid><orcidid>https://orcid.org/0000-0002-6364-612X</orcidid><orcidid>https://orcid.org/0000-0002-7136-6777</orcidid><orcidid>https://orcid.org/0000-0002-1836-4692</orcidid></search><sort><creationdate>20201121</creationdate><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><author>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Algorithms</topic><topic>Biological properties</topic><topic>Biomechanics</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Condensed Matter</topic><topic>Deoxyribonucleic acid</topic><topic>Design optimization</topic><topic>DNA</topic><topic>Elongation</topic><topic>Filaments</topic><topic>Fluid mechanics</topic><topic>Image quality</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Particulates</topic><topic>Physics</topic><topic>Rheological properties</topic><topic>Shear flow</topic><topic>Soft Condensed Matter</topic><topic>Strain rate</topic><topic>Tracking</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Zografos, Konstantinos</creatorcontrib><creatorcontrib>Fidalgo, Joana</creatorcontrib><creatorcontrib>Duchêne, Charles</creatorcontrib><creatorcontrib>Quintard, Clément</creatorcontrib><creatorcontrib>Darnige, Thierry</creatorcontrib><creatorcontrib>Filipe, Vasco</creatorcontrib><creatorcontrib>Huille, Sylvain</creatorcontrib><creatorcontrib>du Roure, Olivia</creatorcontrib><creatorcontrib>Oliveira, Mónica S. N</creatorcontrib><creatorcontrib>Lindner, Anke</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanan</au><au>Zografos, Konstantinos</au><au>Fidalgo, Joana</au><au>Duchêne, Charles</au><au>Quintard, Clément</au><au>Darnige, Thierry</au><au>Filipe, Vasco</au><au>Huille, Sylvain</au><au>du Roure, Olivia</au><au>Oliveira, Mónica S. N</au><au>Lindner, Anke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</atitle><jtitle>Soft matter</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>16</volume><issue>43</issue><spage>9844</spage><epage>9856</epage><pages>9844-9856</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0sm01293a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4202-5399</orcidid><orcidid>https://orcid.org/0000-0001-5732-7803</orcidid><orcidid>https://orcid.org/0000-0002-5007-9568</orcidid><orcidid>https://orcid.org/0000-0002-6364-612X</orcidid><orcidid>https://orcid.org/0000-0002-7136-6777</orcidid><orcidid>https://orcid.org/0000-0002-1836-4692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2020-11, Vol.16 (43), p.9844-9856 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2447541707 |
source | Royal Society of Chemistry |
subjects | Actin Algorithms Biological properties Biomechanics Compression Compression tests Condensed Matter Deoxyribonucleic acid Design optimization DNA Elongation Filaments Fluid mechanics Image quality Mechanical properties Mechanics Microchannels Microfluidic devices Microfluidics Particulates Physics Rheological properties Shear flow Soft Condensed Matter Strain rate Tracking Viscous flow |
title | Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimised%20hyperbolic%20microchannels%20for%20the%20mechanical%20characterisation%20of%20bio-particles&rft.jtitle=Soft%20matter&rft.au=Liu,%20Yanan&rft.date=2020-11-21&rft.volume=16&rft.issue=43&rft.spage=9844&rft.epage=9856&rft.pages=9844-9856&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01293a&rft_dat=%3Cproquest_hal_p%3E2447541707%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459420836&rft_id=info:pmid/&rfr_iscdi=true |