Loading…

Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles

The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical proper...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2020-11, Vol.16 (43), p.9844-9856
Main Authors: Liu, Yanan, Zografos, Konstantinos, Fidalgo, Joana, Duchêne, Charles, Quintard, Clément, Darnige, Thierry, Filipe, Vasco, Huille, Sylvain, du Roure, Olivia, Oliveira, Mónica S. N, Lindner, Anke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43
cites cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43
container_end_page 9856
container_issue 43
container_start_page 9844
container_title Soft matter
container_volume 16
creator Liu, Yanan
Zografos, Konstantinos
Fidalgo, Joana
Duchêne, Charles
Quintard, Clément
Darnige, Thierry
Filipe, Vasco
Huille, Sylvain
du Roure, Olivia
Oliveira, Mónica S. N
Lindner, Anke
description The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world. The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.
doi_str_mv 10.1039/d0sm01293a
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447541707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447541707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7pxbtQ8KJCNWl-tDmO-WPCZAcVvYUkTWkkbWrSCfvvzaxM8JTHy4eQ975JcgrBNQSI3VQgtADmDIm9ZAILjDNa4nJ_V6P3w-QohA8AUIkhnSRvq34wrQm6SptNr7101qi0Nco71Yiu0zaktfPp0Oi01duWUcKmsfBCDdqbIAbjutTVqTQu64UfjLI6HCcHtbBBn_ye0-T1_u5lvsiWq4fH-WyZKUzzIauJrEiuClooRhnTZVlhWiBWUQkkjBcSoFxVJRQYMihVLkjOsCZESVmTCqNpcjm-2wjLe29a4TfcCcMXsyXf9gDCCBLKvmC0F6Ptvftc6zDwOLjS1opOu3XgOcYFwbAARaTn_-iHW_suThIVYTgHJaJRXY0qbisEr-vdDyDg2zz4LXh--sljFvHZiH1QO_eXF_oGKGiG8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459420836</pqid></control><display><type>article</type><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><source>Royal Society of Chemistry</source><creator>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</creator><creatorcontrib>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</creatorcontrib><description>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world. The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm01293a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Actin ; Algorithms ; Biological properties ; Biomechanics ; Compression ; Compression tests ; Condensed Matter ; Deoxyribonucleic acid ; Design optimization ; DNA ; Elongation ; Filaments ; Fluid mechanics ; Image quality ; Mechanical properties ; Mechanics ; Microchannels ; Microfluidic devices ; Microfluidics ; Particulates ; Physics ; Rheological properties ; Shear flow ; Soft Condensed Matter ; Strain rate ; Tracking ; Viscous flow</subject><ispartof>Soft matter, 2020-11, Vol.16 (43), p.9844-9856</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</citedby><cites>FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</cites><orcidid>0000-0003-4202-5399 ; 0000-0001-5732-7803 ; 0000-0002-5007-9568 ; 0000-0002-6364-612X ; 0000-0002-7136-6777 ; 0000-0002-1836-4692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03431569$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Zografos, Konstantinos</creatorcontrib><creatorcontrib>Fidalgo, Joana</creatorcontrib><creatorcontrib>Duchêne, Charles</creatorcontrib><creatorcontrib>Quintard, Clément</creatorcontrib><creatorcontrib>Darnige, Thierry</creatorcontrib><creatorcontrib>Filipe, Vasco</creatorcontrib><creatorcontrib>Huille, Sylvain</creatorcontrib><creatorcontrib>du Roure, Olivia</creatorcontrib><creatorcontrib>Oliveira, Mónica S. N</creatorcontrib><creatorcontrib>Lindner, Anke</creatorcontrib><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><title>Soft matter</title><description>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world. The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</description><subject>Actin</subject><subject>Algorithms</subject><subject>Biological properties</subject><subject>Biomechanics</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Condensed Matter</subject><subject>Deoxyribonucleic acid</subject><subject>Design optimization</subject><subject>DNA</subject><subject>Elongation</subject><subject>Filaments</subject><subject>Fluid mechanics</subject><subject>Image quality</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Particulates</subject><subject>Physics</subject><subject>Rheological properties</subject><subject>Shear flow</subject><subject>Soft Condensed Matter</subject><subject>Strain rate</subject><subject>Tracking</subject><subject>Viscous flow</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7pxbtQ8KJCNWl-tDmO-WPCZAcVvYUkTWkkbWrSCfvvzaxM8JTHy4eQ975JcgrBNQSI3VQgtADmDIm9ZAILjDNa4nJ_V6P3w-QohA8AUIkhnSRvq34wrQm6SptNr7101qi0Nco71Yiu0zaktfPp0Oi01duWUcKmsfBCDdqbIAbjutTVqTQu64UfjLI6HCcHtbBBn_ye0-T1_u5lvsiWq4fH-WyZKUzzIauJrEiuClooRhnTZVlhWiBWUQkkjBcSoFxVJRQYMihVLkjOsCZESVmTCqNpcjm-2wjLe29a4TfcCcMXsyXf9gDCCBLKvmC0F6Ptvftc6zDwOLjS1opOu3XgOcYFwbAARaTn_-iHW_suThIVYTgHJaJRXY0qbisEr-vdDyDg2zz4LXh--sljFvHZiH1QO_eXF_oGKGiG8w</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Liu, Yanan</creator><creator>Zografos, Konstantinos</creator><creator>Fidalgo, Joana</creator><creator>Duchêne, Charles</creator><creator>Quintard, Clément</creator><creator>Darnige, Thierry</creator><creator>Filipe, Vasco</creator><creator>Huille, Sylvain</creator><creator>du Roure, Olivia</creator><creator>Oliveira, Mónica S. N</creator><creator>Lindner, Anke</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4202-5399</orcidid><orcidid>https://orcid.org/0000-0001-5732-7803</orcidid><orcidid>https://orcid.org/0000-0002-5007-9568</orcidid><orcidid>https://orcid.org/0000-0002-6364-612X</orcidid><orcidid>https://orcid.org/0000-0002-7136-6777</orcidid><orcidid>https://orcid.org/0000-0002-1836-4692</orcidid></search><sort><creationdate>20201121</creationdate><title>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</title><author>Liu, Yanan ; Zografos, Konstantinos ; Fidalgo, Joana ; Duchêne, Charles ; Quintard, Clément ; Darnige, Thierry ; Filipe, Vasco ; Huille, Sylvain ; du Roure, Olivia ; Oliveira, Mónica S. N ; Lindner, Anke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Algorithms</topic><topic>Biological properties</topic><topic>Biomechanics</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Condensed Matter</topic><topic>Deoxyribonucleic acid</topic><topic>Design optimization</topic><topic>DNA</topic><topic>Elongation</topic><topic>Filaments</topic><topic>Fluid mechanics</topic><topic>Image quality</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Particulates</topic><topic>Physics</topic><topic>Rheological properties</topic><topic>Shear flow</topic><topic>Soft Condensed Matter</topic><topic>Strain rate</topic><topic>Tracking</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanan</creatorcontrib><creatorcontrib>Zografos, Konstantinos</creatorcontrib><creatorcontrib>Fidalgo, Joana</creatorcontrib><creatorcontrib>Duchêne, Charles</creatorcontrib><creatorcontrib>Quintard, Clément</creatorcontrib><creatorcontrib>Darnige, Thierry</creatorcontrib><creatorcontrib>Filipe, Vasco</creatorcontrib><creatorcontrib>Huille, Sylvain</creatorcontrib><creatorcontrib>du Roure, Olivia</creatorcontrib><creatorcontrib>Oliveira, Mónica S. N</creatorcontrib><creatorcontrib>Lindner, Anke</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanan</au><au>Zografos, Konstantinos</au><au>Fidalgo, Joana</au><au>Duchêne, Charles</au><au>Quintard, Clément</au><au>Darnige, Thierry</au><au>Filipe, Vasco</au><au>Huille, Sylvain</au><au>du Roure, Olivia</au><au>Oliveira, Mónica S. N</au><au>Lindner, Anke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles</atitle><jtitle>Soft matter</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>16</volume><issue>43</issue><spage>9844</spage><epage>9856</epage><pages>9844-9856</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging-diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world. The transport of bio-particles in optimised extension/compression microfluidic geometries exhibits a rich variety of dynamical behaviour, such as morphological transitions, deformation or complex orientation dynamics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0sm01293a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4202-5399</orcidid><orcidid>https://orcid.org/0000-0001-5732-7803</orcidid><orcidid>https://orcid.org/0000-0002-5007-9568</orcidid><orcidid>https://orcid.org/0000-0002-6364-612X</orcidid><orcidid>https://orcid.org/0000-0002-7136-6777</orcidid><orcidid>https://orcid.org/0000-0002-1836-4692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-11, Vol.16 (43), p.9844-9856
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2447541707
source Royal Society of Chemistry
subjects Actin
Algorithms
Biological properties
Biomechanics
Compression
Compression tests
Condensed Matter
Deoxyribonucleic acid
Design optimization
DNA
Elongation
Filaments
Fluid mechanics
Image quality
Mechanical properties
Mechanics
Microchannels
Microfluidic devices
Microfluidics
Particulates
Physics
Rheological properties
Shear flow
Soft Condensed Matter
Strain rate
Tracking
Viscous flow
title Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimised%20hyperbolic%20microchannels%20for%20the%20mechanical%20characterisation%20of%20bio-particles&rft.jtitle=Soft%20matter&rft.au=Liu,%20Yanan&rft.date=2020-11-21&rft.volume=16&rft.issue=43&rft.spage=9844&rft.epage=9856&rft.pages=9844-9856&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm01293a&rft_dat=%3Cproquest_hal_p%3E2447541707%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-f5bd52c767c9699e88d46739d6b0b12c7b032cd81a4191bc2a5294e55cbbf5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459420836&rft_id=info:pmid/&rfr_iscdi=true