Loading…
Suppression of ambient stray field for alkali magnetometer of nuclear magnetic resonance gyroscopes: Modeling and experiment
In nuclear magnetic resonance gyroscopes (NMRGs), an ambient stray field should be suppressed to maximize performance of the in situ parametrically modulated alkali magnetometer (PMAM). Transfer functions of the PMAM of NMRGs decoupled with lock-in amplifiers are obtained by theoretical and simulati...
Saved in:
Published in: | Review of scientific instruments 2020-09, Vol.91 (9), p.095005-095005 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In nuclear magnetic resonance gyroscopes (NMRGs), an ambient stray field should be suppressed to maximize performance of the in situ parametrically modulated alkali magnetometer (PMAM). Transfer functions of the PMAM of NMRGs decoupled with lock-in amplifiers are obtained by theoretical and simulation identification. It is found that the frequency bandwidth of the PMAM of NMRGs decoupled by lock-in amplifiers depends largely upon the low-pass filter of the lock-in amplifiers. A dynamic Kalman filter is used to estimate the stray field disturbance that is fed back to field coils to compensate the disturbance in the PMAM. Simulation and experiment results show that the dynamic Kalman filter has adaptiveness to the frequency shift of the nuclear spin precession signal of NMRGs that is quasi-sinusoidal. The dynamic Kalman filter for the PMAM is efficient in suppressing the ambient stray field noise of broad band and low frequency. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0018011 |