Loading…

Identification and characterization of β-d-galactofuranosidases from Aspergillus nidulans and Aspergillus fumigatus

Although β-d-galactofuranosidases (Galf-ases) that hydrolyze β-d-galactofuranose (Galf)-containing oligosaccharides have been characterized in various organisms, to date no Galf-specific Galf-ase-encoding genes have been reported in Aspergillus fungi. Based on the amino acid sequences of previously...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2021-01, Vol.131 (1), p.1-7
Main Authors: Matsunaga, Emiko, Tanaka, Yutaka, Toyota, Saki, Yamada, Hisae, Oka, Takuji, Higuchi, Yujiro, Takegawa, Kaoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although β-d-galactofuranosidases (Galf-ases) that hydrolyze β-d-galactofuranose (Galf)-containing oligosaccharides have been characterized in various organisms, to date no Galf-specific Galf-ase-encoding genes have been reported in Aspergillus fungi. Based on the amino acid sequences of previously identified bacterial Galf-ases, here we found two candidate Galf-specific Galf-ase genes AN2395 (gfgA) and AN3200 (gfgB) in the genome of Aspergillus nidulans. Indeed, recombinant GfgA and GfgB proteins exhibited Galf-specific Galf-ase activity, but no detectable α-l-arabinofuranosidase (Araf-ase) activity. Phylogenetic analysis of GfgA and GfgB orthologs indicated that there are two types of Aspergillus species: those containing one ortholog each for GfgA and GfgB; and those containing only one ortholog in total, among which Aspergillus fumigatus there is a representative with a single ortholog Galf-ase Afu2g14520. Unlike GfgA and GfgB, the recombinant Afu2g14520 protein showed higher Araf-ase activity than Galf-ase activity. An assay of substrate specificity revealed that although GfgA and GfgB are both exo-type Galf-ases and hydrolyze β-(1,5) and β-(1,6) linkages, GfgA hydrolyzes β-(1,6)-linked Galf-oligosaccharide more effectively as compared with GfgB. Collectively, our findings indicate that Galf-ases in Aspergillus species may have a role in cooperatively degrading Galf-containing oligosaccharides depending on environmental conditions.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2020.09.006