Loading…

Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems

[Display omitted] The design of appropriate materials is required for biomedical applications (e.g. drug delivery systems) in improving people's health care processes. This study focused on the incorporation of nanosized hydroxyapatite (n-HA) with different ratios (ranging from 0.1 wt% to 0.5 w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2020-11, Vol.590, p.119933-119933, Article 119933
Main Authors: Eskitoros-Togay, Ş. Melda, Bulbul, Y. Emre, Dilsiz, Nursel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The design of appropriate materials is required for biomedical applications (e.g. drug delivery systems) in improving people's health care processes. This study focused on the incorporation of nanosized hydroxyapatite (n-HA) with different ratios (ranging from 0.1 wt% to 0.5 wt%) into the poly (ε-caprolactone)/ poly (ethylene oxide) (PCL/PEO) blend matrix loaded or unloaded with curcumin. Composite fibrous material systems were successfully fabricated by the electrospinning technique without the occurrence of bead defects. In addition to the morphological and physicochemical properties of the material systems obtained, the in vitro curcumin release performance was investigated. Further, anti-cancer activity against breast cancer cell line (MCF-7) was examined by MTT assay. Fourier transform infrared spectroscopy and X-ray diffraction characterizations of the fabricated fibrous materials exhibited the interaction of PCL/PEO, n-HA, and curcumin. The 0.3 wt% n-HA incorporated fibrous materials showed a much slower curcumin release manner along with the highest cytotoxicity against MCF-7 cells. The findings obtained from this research are expected to contribute to the appropriate design of nanofiber-based composite materials not only for drug delivery systems but also for the fabrication of biomaterials toward different biomedical applications.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2020.119933