Loading…
Neurodynamical classifiers with low model complexity
The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik–Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik’s risk formula indicates that models with smaller VC d...
Saved in:
Published in: | Neural networks 2020-12, Vol.132, p.405-415 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63 |
container_end_page | 415 |
container_issue | |
container_start_page | 405 |
container_title | Neural networks |
container_volume | 132 |
creator | Pant, Himanshu Soman, Sumit Jayadeva Bhaya, Amit |
description | The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik–Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik’s risk formula indicates that models with smaller VC dimension are expected to show improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network that converges to the MCM solution. We employ the MCM neurodynamical system as the final layer of a neural network architecture. Our approach also optimizes the weights of all layers in order to minimize the objective, which is a combination of a bound on the VC dimension and the classification error. We illustrate the use of this model for robust binary and multi-class classification. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, and learns models with improved accuracies and fewer support vectors. |
doi_str_mv | 10.1016/j.neunet.2020.08.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448638607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020303026</els_id><sourcerecordid>2448638607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwh1ySbBrzrOBglVvKQKNrC2HHsiXCVxsRNK_x5XKSxZjUZz78ydg9AlwTnBRNys8w6GDvqcYopzLHNM2BGaElmUGS0kPUZTLEuWCSzxBJ3FuMYYC8nZKZowhgkRBZki_gJD8HbX6dYZ3cxNo2N0tYMQ51vXf8wbv5233kIa-XbTwLfrd-fopNZNhItDnaH3h_u35VO2en18Xt6tMsME7TOqueTaLgSvmK3B8kXKA5UpytKY0jBaW0uMNbqqrE69ZGWKRQmxheFFLdgMXY97N8F_DhB71bpooGl0B36IinIuBZMCF0nKR6kJPsYAtdoE1-qwUwSrPS-1ViMvteelsFSJV7JdHS4MVQv2z_QLKAluRwGkP78SFhWNg86AdQFMr6x3_1_4AYIWfpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448638607</pqid></control><display><type>article</type><title>Neurodynamical classifiers with low model complexity</title><source>Elsevier</source><creator>Pant, Himanshu ; Soman, Sumit ; Jayadeva ; Bhaya, Amit</creator><creatorcontrib>Pant, Himanshu ; Soman, Sumit ; Jayadeva ; Bhaya, Amit</creatorcontrib><description>The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik–Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik’s risk formula indicates that models with smaller VC dimension are expected to show improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network that converges to the MCM solution. We employ the MCM neurodynamical system as the final layer of a neural network architecture. Our approach also optimizes the weights of all layers in order to minimize the objective, which is a combination of a bound on the VC dimension and the classification error. We illustrate the use of this model for robust binary and multi-class classification. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, and learns models with improved accuracies and fewer support vectors.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.08.013</identifier><identifier>PMID: 33011671</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Classification ; Linear programming ; Minimal Complexity Machine ; Neural network ; Neural Networks, Computer ; Support Vector Machine ; VC dimension</subject><ispartof>Neural networks, 2020-12, Vol.132, p.405-415</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63</citedby><cites>FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63</cites><orcidid>0000-0002-3144-1242 ; 0000-0003-1926-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33011671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pant, Himanshu</creatorcontrib><creatorcontrib>Soman, Sumit</creatorcontrib><creatorcontrib>Jayadeva</creatorcontrib><creatorcontrib>Bhaya, Amit</creatorcontrib><title>Neurodynamical classifiers with low model complexity</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik–Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik’s risk formula indicates that models with smaller VC dimension are expected to show improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network that converges to the MCM solution. We employ the MCM neurodynamical system as the final layer of a neural network architecture. Our approach also optimizes the weights of all layers in order to minimize the objective, which is a combination of a bound on the VC dimension and the classification error. We illustrate the use of this model for robust binary and multi-class classification. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, and learns models with improved accuracies and fewer support vectors.</description><subject>Classification</subject><subject>Linear programming</subject><subject>Minimal Complexity Machine</subject><subject>Neural network</subject><subject>Neural Networks, Computer</subject><subject>Support Vector Machine</subject><subject>VC dimension</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwh1ySbBrzrOBglVvKQKNrC2HHsiXCVxsRNK_x5XKSxZjUZz78ydg9AlwTnBRNys8w6GDvqcYopzLHNM2BGaElmUGS0kPUZTLEuWCSzxBJ3FuMYYC8nZKZowhgkRBZki_gJD8HbX6dYZ3cxNo2N0tYMQ51vXf8wbv5233kIa-XbTwLfrd-fopNZNhItDnaH3h_u35VO2en18Xt6tMsME7TOqueTaLgSvmK3B8kXKA5UpytKY0jBaW0uMNbqqrE69ZGWKRQmxheFFLdgMXY97N8F_DhB71bpooGl0B36IinIuBZMCF0nKR6kJPsYAtdoE1-qwUwSrPS-1ViMvteelsFSJV7JdHS4MVQv2z_QLKAluRwGkP78SFhWNg86AdQFMr6x3_1_4AYIWfpI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Pant, Himanshu</creator><creator>Soman, Sumit</creator><creator>Jayadeva</creator><creator>Bhaya, Amit</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3144-1242</orcidid><orcidid>https://orcid.org/0000-0003-1926-3065</orcidid></search><sort><creationdate>202012</creationdate><title>Neurodynamical classifiers with low model complexity</title><author>Pant, Himanshu ; Soman, Sumit ; Jayadeva ; Bhaya, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Linear programming</topic><topic>Minimal Complexity Machine</topic><topic>Neural network</topic><topic>Neural Networks, Computer</topic><topic>Support Vector Machine</topic><topic>VC dimension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pant, Himanshu</creatorcontrib><creatorcontrib>Soman, Sumit</creatorcontrib><creatorcontrib>Jayadeva</creatorcontrib><creatorcontrib>Bhaya, Amit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pant, Himanshu</au><au>Soman, Sumit</au><au>Jayadeva</au><au>Bhaya, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurodynamical classifiers with low model complexity</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-12</date><risdate>2020</risdate><volume>132</volume><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The recently proposed Minimal Complexity Machine (MCM) finds a hyperplane classifier by minimizing an upper bound on the Vapnik–Chervonenkis (VC) dimension. The VC dimension measures the capacity or model complexity of a learning machine. Vapnik’s risk formula indicates that models with smaller VC dimension are expected to show improved generalization. On many benchmark datasets, the MCM generalizes better than SVMs and uses far fewer support vectors than the number used by SVMs. In this paper, we describe a neural network that converges to the MCM solution. We employ the MCM neurodynamical system as the final layer of a neural network architecture. Our approach also optimizes the weights of all layers in order to minimize the objective, which is a combination of a bound on the VC dimension and the classification error. We illustrate the use of this model for robust binary and multi-class classification. Numerical experiments on benchmark datasets from the UCI repository show that the proposed approach is scalable and accurate, and learns models with improved accuracies and fewer support vectors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33011671</pmid><doi>10.1016/j.neunet.2020.08.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3144-1242</orcidid><orcidid>https://orcid.org/0000-0003-1926-3065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2020-12, Vol.132, p.405-415 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2448638607 |
source | Elsevier |
subjects | Classification Linear programming Minimal Complexity Machine Neural network Neural Networks, Computer Support Vector Machine VC dimension |
title | Neurodynamical classifiers with low model complexity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurodynamical%20classifiers%20with%20low%20model%20complexity&rft.jtitle=Neural%20networks&rft.au=Pant,%20Himanshu&rft.date=2020-12&rft.volume=132&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.08.013&rft_dat=%3Cproquest_cross%3E2448638607%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-2a484ad564b3dfed45893ebc799cc9c32fdd1cdcabbda9c3839011211d7c47f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448638607&rft_id=info:pmid/33011671&rfr_iscdi=true |