Loading…

The possible role of the seaweed Ulva fasciata on ameliorating hyperthyroidism-associated heart inflammations in a rat model

Cardiovascular diseases are key complications primarily associated with hyperthyroidism disorders. The present study sought to ameliorate hyperthyroidism-mediated cardiovascular inflammations and related oxidative stress paradigms in experimental rats using the broadly distributed green seaweed Ulva...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2021-02, Vol.28 (6), p.6830-6842
Main Authors: Ibrahim, Rasha Youssef Mohammed, Saber, Abdullah Antar, Hammad, Huda Badr Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiovascular diseases are key complications primarily associated with hyperthyroidism disorders. The present study sought to ameliorate hyperthyroidism-mediated cardiovascular inflammations and related oxidative stress paradigms in experimental rats using the broadly distributed green seaweed Ulva fasciata . Forty-eight adult male albino rats were recruited and randomly classified into six groups. Hyperthyroidism was stimulated using l -thyroxine sodium at a dose of 100 μg/kg i.p. for 3 weeks daily. Further, 200 mg/kg b.wt. concentration of the U . fasciata methanolic ( U . fasciata -MeOH) extract was the recommended dose and administrated orally to the hyperthyroid rats. The standard commercial drug “propranolol hydrochloride” was also tested at a dose of 10 mg/kg i.p. to compare the findings obtained from the seaweed extract. A combined treatment with the U . fasciata -MeOH extract and propranolol hydrochloride was also assessed. Our results implied that the treatment of hyperthyroid rats with the U . fasciata -MeOH extract significantly reduced serum levels of the thyroid hormones T3 and T4, proinflammatory cytokines (TNF-α, MPO, and CRP), triglycerides and total cholesterol, as well as the cardiac biomarkers CK-MB, LDH, and troponin to thresholds close to those of the standard drug. In addition, levels of high-density lipoprotein cholesterol (HDL-C) and interleukin 10 (IL-10) were significantly upregulated. Hyperthyroid rats only treated with propranolol hydrochloride, or with a combination of the drug and the seaweed extract, conferred the same observations. Histopathological architecture boosted our interesting findings where the myocardium tissues in hyperthyroid rats, administrated the U . fasciata -MeOH extract or/and propranolol hydrochloride, exhibited more or less a normal structure as the control, reflecting the potential cardiovascular recovery exerted by this seaweed extract. In vitro DPPH, ABTS, and FRAP antioxidant assays of the U . fasciata -MeOH extract showed an outstanding ROS-scavenging potential. HPLC analysis of the U . fasciata -MeOH extract unraveled an inestimable valuable array of phenolics (mainly p -coumaric, gallic, ferulic, chlorogenic, and syringic acids) and flavonoids (hesperidin, kaempferol, catechin, quercetin, and rutin). Conclusively, the seaweed U . fasciata is a profitable source of antioxidant polyphenolics characterized by having a pharmaceutical potential against hyperthyroidism-linked cardiovascular inflammati
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-11036-z