Loading…

Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings

The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introd...

Full description

Saved in:
Bibliographic Details
Main Authors: Keenan, Emerson, Udhayakumar, Radhagayrathi K., Karmakar, Chandan K., Brownfoot, Fiona C., Palaniswami, Marimuthu
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c219t-c8a3d293356c1f68f0d73ced30f54c39624e1f6e652d248323d80b8f50a336063
cites
container_end_page 624
container_issue
container_start_page 621
container_title
container_volume 2020
creator Keenan, Emerson
Udhayakumar, Radhagayrathi K.
Karmakar, Chandan K.
Brownfoot, Fiona C.
Palaniswami, Marimuthu
description The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introduce the use of data-driven entropy profiling to automatically detect fetal arrhythmias in short length FHR recordings obtained via NI-FECG. Using an open access dataset of 11 normal and 11 arrhythmic fetuses, our method (TotalSampEn) achieves excellent classification performance (AUC = 0.98) for detecting fetal arrhythmias in a short time window (i.e. under 10 minutes). We demonstrate that our method outperforms SampEn (AUC = 0.72) and FuzzyEn (AUC = 0.74) based estimates, proving its effectiveness for this task. The rapid detection provided by our approach may enable efficient triage of concerning FHR recordings for clinician review.
doi_str_mv 10.1109/EMBC44109.2020.9175892
format conference_proceeding
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2448844748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9175892</ieee_id><sourcerecordid>2448844748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-c8a3d293356c1f68f0d73ced30f54c39624e1f6e652d248323d80b8f50a336063</originalsourceid><addsrcrecordid>eNotkE1PAjEYhKuJiYj-AhPTo5fFfu62R0QQE4wG9bzW7lu2ZtliWw78ezeB00wmz8xhELqjZEIp0Q_z18eZEIObMMLIRNNKKs3O0BWtmKJUa0LP0YhKqQpRUnmJrlL6JQNKJB2h73mfY9gd8HsMzne-32AXIn6CDDb70OPg8AKy6fA0xvaQ2603Cfsef7QhZryCfpPbE7EEM0RrkwGvwYbYDGvpGl040yW4OekYfS3mn7NlsXp7fplNV4VlVOfCKsMbpjmXpaWuVI40FbfQcOKksFyXTMCQQylZw4TijDeK_CgnieG8JCUfo_vj7i6Gvz2kXG99stB1poewTzUTQikhqqE7RrdH1ANAvYt-a-KhPh3H_wHYRmIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2448844748</pqid></control><display><type>conference_proceeding</type><title>Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings</title><source>IEEE Xplore All Conference Series</source><creator>Keenan, Emerson ; Udhayakumar, Radhagayrathi K. ; Karmakar, Chandan K. ; Brownfoot, Fiona C. ; Palaniswami, Marimuthu</creator><creatorcontrib>Keenan, Emerson ; Udhayakumar, Radhagayrathi K. ; Karmakar, Chandan K. ; Brownfoot, Fiona C. ; Palaniswami, Marimuthu</creatorcontrib><description>The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introduce the use of data-driven entropy profiling to automatically detect fetal arrhythmias in short length FHR recordings obtained via NI-FECG. Using an open access dataset of 11 normal and 11 arrhythmic fetuses, our method (TotalSampEn) achieves excellent classification performance (AUC = 0.98) for detecting fetal arrhythmias in a short time window (i.e. under 10 minutes). We demonstrate that our method outperforms SampEn (AUC = 0.72) and FuzzyEn (AUC = 0.74) based estimates, proving its effectiveness for this task. The rapid detection provided by our approach may enable efficient triage of concerning FHR recordings for clinician review.</description><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1728119901</identifier><identifier>EISBN: 9781728119908</identifier><identifier>DOI: 10.1109/EMBC44109.2020.9175892</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2020 42nd Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC), 2020, Vol.2020, p.621-624</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-c8a3d293356c1f68f0d73ced30f54c39624e1f6e652d248323d80b8f50a336063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Keenan, Emerson</creatorcontrib><creatorcontrib>Udhayakumar, Radhagayrathi K.</creatorcontrib><creatorcontrib>Karmakar, Chandan K.</creatorcontrib><creatorcontrib>Brownfoot, Fiona C.</creatorcontrib><creatorcontrib>Palaniswami, Marimuthu</creatorcontrib><title>Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings</title><title>2020 42nd Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introduce the use of data-driven entropy profiling to automatically detect fetal arrhythmias in short length FHR recordings obtained via NI-FECG. Using an open access dataset of 11 normal and 11 arrhythmic fetuses, our method (TotalSampEn) achieves excellent classification performance (AUC = 0.98) for detecting fetal arrhythmias in a short time window (i.e. under 10 minutes). We demonstrate that our method outperforms SampEn (AUC = 0.72) and FuzzyEn (AUC = 0.74) based estimates, proving its effectiveness for this task. The rapid detection provided by our approach may enable efficient triage of concerning FHR recordings for clinician review.</description><issn>1558-4615</issn><issn>2694-0604</issn><isbn>1728119901</isbn><isbn>9781728119908</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1PAjEYhKuJiYj-AhPTo5fFfu62R0QQE4wG9bzW7lu2ZtliWw78ezeB00wmz8xhELqjZEIp0Q_z18eZEIObMMLIRNNKKs3O0BWtmKJUa0LP0YhKqQpRUnmJrlL6JQNKJB2h73mfY9gd8HsMzne-32AXIn6CDDb70OPg8AKy6fA0xvaQ2603Cfsef7QhZryCfpPbE7EEM0RrkwGvwYbYDGvpGl040yW4OekYfS3mn7NlsXp7fplNV4VlVOfCKsMbpjmXpaWuVI40FbfQcOKksFyXTMCQQylZw4TijDeK_CgnieG8JCUfo_vj7i6Gvz2kXG99stB1poewTzUTQikhqqE7RrdH1ANAvYt-a-KhPh3H_wHYRmIY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Keenan, Emerson</creator><creator>Udhayakumar, Radhagayrathi K.</creator><creator>Karmakar, Chandan K.</creator><creator>Brownfoot, Fiona C.</creator><creator>Palaniswami, Marimuthu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20200701</creationdate><title>Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings</title><author>Keenan, Emerson ; Udhayakumar, Radhagayrathi K. ; Karmakar, Chandan K. ; Brownfoot, Fiona C. ; Palaniswami, Marimuthu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-c8a3d293356c1f68f0d73ced30f54c39624e1f6e652d248323d80b8f50a336063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Keenan, Emerson</creatorcontrib><creatorcontrib>Udhayakumar, Radhagayrathi K.</creatorcontrib><creatorcontrib>Karmakar, Chandan K.</creatorcontrib><creatorcontrib>Brownfoot, Fiona C.</creatorcontrib><creatorcontrib>Palaniswami, Marimuthu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keenan, Emerson</au><au>Udhayakumar, Radhagayrathi K.</au><au>Karmakar, Chandan K.</au><au>Brownfoot, Fiona C.</au><au>Palaniswami, Marimuthu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings</atitle><btitle>2020 42nd Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>2020</volume><spage>621</spage><epage>624</epage><pages>621-624</pages><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>1728119901</eisbn><eisbn>9781728119908</eisbn><abstract>The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introduce the use of data-driven entropy profiling to automatically detect fetal arrhythmias in short length FHR recordings obtained via NI-FECG. Using an open access dataset of 11 normal and 11 arrhythmic fetuses, our method (TotalSampEn) achieves excellent classification performance (AUC = 0.98) for detecting fetal arrhythmias in a short time window (i.e. under 10 minutes). We demonstrate that our method outperforms SampEn (AUC = 0.72) and FuzzyEn (AUC = 0.74) based estimates, proving its effectiveness for this task. The rapid detection provided by our approach may enable efficient triage of concerning FHR recordings for clinician review.</abstract><pub>IEEE</pub><doi>10.1109/EMBC44109.2020.9175892</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1558-4615
ispartof 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, Vol.2020, p.621-624
issn 1558-4615
2694-0604
language eng
recordid cdi_proquest_miscellaneous_2448844748
source IEEE Xplore All Conference Series
title Entropy Profiling for Detection of Fetal Arrhythmias in Short Length Fetal Heart Rate Recordings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Entropy%20Profiling%20for%20Detection%20of%20Fetal%20Arrhythmias%20in%20Short%20Length%20Fetal%20Heart%20Rate%20Recordings&rft.btitle=2020%2042nd%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20&%20Biology%20Society%20(EMBC)&rft.au=Keenan,%20Emerson&rft.date=2020-07-01&rft.volume=2020&rft.spage=621&rft.epage=624&rft.pages=621-624&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC44109.2020.9175892&rft.eisbn=1728119901&rft.eisbn_list=9781728119908&rft_dat=%3Cproquest_ieee_%3E2448844748%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-c8a3d293356c1f68f0d73ced30f54c39624e1f6e652d248323d80b8f50a336063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2448844748&rft_id=info:pmid/&rft_ieee_id=9175892&rfr_iscdi=true