Loading…
Characterization of four BCHE mutations associated with prolonged effect of suxamethonium
Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the BCHE gene. Here, we report the characterization of four BCHE mutations associated with prolonged effect of suxamethonium (...
Saved in:
Published in: | The pharmacogenomics journal 2021-04, Vol.21 (2), p.165-173 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Butyrylcholinesterase (BChE) deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivacurium) in patients who have mutations in the
BCHE
gene. Here, we report the characterization of four
BCHE
mutations associated with prolonged effect of suxamethonium (amino acid numbering based on the matured enzyme): p.20delValPheGlyGlyThrValThr, p.Leu88His, p.Ile140del and p.Arg386Cys. Expression of recombinant
BCHE
mutants, kinetic analysis and molecular dynamics were undertaken to understand how these mutations induce BChE deficiency. Three of the mutations studied (p.20delValPheGlyGlyThrValThr, p.Ile140del and p.Arg386Cys) lead to a “silent” BChE phenotype. Recombinant
BCHE
expression studies for these mutants revealed BChE activity levels comparable to untransfected cells. Only the last one (hBChE-L88H) presented BChE activity in the transfected cell culture medium. This BChE mutant (p.Leu88His) is associated with a lower k
cat
value compare to the wild-type enzyme. Molecular dynamics simulations analyses suggest that a destabilization of a structure implicated in enzyme activity (Ω-loop) can explain the modification of the kinetic parameter of the mutated protein. |
---|---|
ISSN: | 1470-269X 1473-1150 |
DOI: | 10.1038/s41397-020-00192-7 |