Loading…
A blend of stretching and bending in nematic polymer networks
Nematic polymer networks are (heat and light) activable materials, which combine the features of rubber and nematic liquid crystals. When only the stretching energy of a thin sheet of nematic polymer network is minimized, the intrinsic (Gaussian) curvature of the shape it takes upon (thermal or opti...
Saved in:
Published in: | Soft matter 2020-10, Vol.16 (38), p.8877-8892 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nematic polymer networks are (heat and light) activable materials, which combine the features of rubber and nematic liquid crystals. When only the stretching energy of a thin sheet of nematic polymer network is minimized, the intrinsic (Gaussian) curvature of the shape it takes upon (thermal or optical) actuation is determined. This, unfortunately, produces a multitude of possible shapes, for which we need a selection criterion, which may only be provided by a correcting bending energy depending on the extrinsic curvatures of the deformed shape. The literature has so far offered approximate corrections depending on the mean curvature. In this paper, we derive the appropriate bending energy for a sheet of nematic polymer network from the celebrated neo-classical energy of nematic elastomers in three space dimensions. This task is performed
via
a dimension reduction based on a modified Kirchhoff-Love hypothesis, which withstands the criticism of more sophisticated analytical tools. The result is a surface elastic free-energy density where stretching and bending are blended together; they may or may not be length-separated, and should be minimized together. The extrinsic curvatures of the deformed shape not only feature in the bending energy through the mean curvature, but also through the relative orientation of the nematic director in the frame of the directions of principal curvatures.
Nematic polymer networks are (heat and light) activable materials, which combine the features of rubber and nematic liquid crystals. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d0sm00642d |