Loading…
Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage
A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithia...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6513), p.192-197 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3 |
container_end_page | 197 |
container_issue | 6513 |
container_start_page | 192 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 370 |
creator | Jin, Hongchang Xin, Sen Chuang, Chenghao Li, Wangda Wang, Haiyun Zhu, Jian Xie, Huanyu Zhang, Taiming Wan, Yangyang Qi, Zhikai Yan, Wensheng Lu, Ying-Rui Chan, Ting-Shan Wu, Xiaojun Goodenough, John B. Ji, Hengxing Duan, Xiangfeng |
description | A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin
et al.
developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.
Science
, this issue p.
192
Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life.
High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li
+
entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li
+
transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance. |
doi_str_mv | 10.1126/science.aav5842 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449953310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449501393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUws1piYUl7sfPlESq-pEosMEeufWlckjjYDqj_HkM7MZzupPe50-kh5DqFRZqyYumVwUHhQsqvvMrYCZmlIPJEMOCnZAbAi6SCMj8nF97vAGIm-Ixs7jupPujYWh_LTZ4q24_Wm4CefpvQUhy2ZkB0qKkZArpGqhg11tHWbNvEyYCHSclRKhP2tItrZuqpD9bJLV6Ss0Z2Hq-OfU7eHx_eVs_J-vXpZXW3ThQHFhJW5JmohNIlF1WhSqFL5JtcM6WKTQagK9Sgs4ZVMRGlLphooKw0EyVnWaH4nNwe7o7Ofk7oQ90br7Dr5IB28jXLMiFyzlOI6M0_dGcnN8Tv_qgcUi54pJYHSjnrvcOmHp3ppdvXKdS_zuuj8_ronP8ATZl3-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449501393</pqid></control><display><type>article</type><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</creator><creatorcontrib>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</creatorcontrib><description>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin
et al.
developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.
Science
, this issue p.
192
Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life.
High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li
+
entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li
+
transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav5842</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Anodes ; Batteries ; Carbon ; Carbonates ; Cathodes ; Charging ; Covalent bonds ; Electric vehicles ; Electrode materials ; Electrolytes ; Fluorides ; Graphite ; Interfaces ; Lithium ; Phosphorus ; Polyanilines ; Potassium ; Stability ; Storage batteries</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.192-197</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</citedby><cites>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</cites><orcidid>0000-0003-1345-2690 ; 0000-0003-1470-1951 ; 0000-0001-8161-1521 ; 0000-0003-3606-1211 ; 0000-0002-6002-5627 ; 0000-0002-0623-652X ; 0000-0002-3717-2696 ; 0000-0001-9350-3034 ; 0000-0001-5220-1611 ; 0000-0002-4321-6288 ; 0000-0001-8103-4285 ; 0000-0002-0985-8316 ; 0000-0001-9852-1645 ; 0000-0003-2851-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chuang, Chenghao</creatorcontrib><creatorcontrib>Li, Wangda</creatorcontrib><creatorcontrib>Wang, Haiyun</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Zhang, Taiming</creatorcontrib><creatorcontrib>Wan, Yangyang</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><title>Science (American Association for the Advancement of Science)</title><description>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin
et al.
developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.
Science
, this issue p.
192
Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life.
High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li
+
entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li
+
transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbonates</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Covalent bonds</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Graphite</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Phosphorus</subject><subject>Polyanilines</subject><subject>Potassium</subject><subject>Stability</subject><subject>Storage batteries</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqUws1piYUl7sfPlESq-pEosMEeufWlckjjYDqj_HkM7MZzupPe50-kh5DqFRZqyYumVwUHhQsqvvMrYCZmlIPJEMOCnZAbAi6SCMj8nF97vAGIm-Ixs7jupPujYWh_LTZ4q24_Wm4CefpvQUhy2ZkB0qKkZArpGqhg11tHWbNvEyYCHSclRKhP2tItrZuqpD9bJLV6Ss0Z2Hq-OfU7eHx_eVs_J-vXpZXW3ThQHFhJW5JmohNIlF1WhSqFL5JtcM6WKTQagK9Sgs4ZVMRGlLphooKw0EyVnWaH4nNwe7o7Ofk7oQ90br7Dr5IB28jXLMiFyzlOI6M0_dGcnN8Tv_qgcUi54pJYHSjnrvcOmHp3ppdvXKdS_zuuj8_ronP8ATZl3-A</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Jin, Hongchang</creator><creator>Xin, Sen</creator><creator>Chuang, Chenghao</creator><creator>Li, Wangda</creator><creator>Wang, Haiyun</creator><creator>Zhu, Jian</creator><creator>Xie, Huanyu</creator><creator>Zhang, Taiming</creator><creator>Wan, Yangyang</creator><creator>Qi, Zhikai</creator><creator>Yan, Wensheng</creator><creator>Lu, Ying-Rui</creator><creator>Chan, Ting-Shan</creator><creator>Wu, Xiaojun</creator><creator>Goodenough, John B.</creator><creator>Ji, Hengxing</creator><creator>Duan, Xiangfeng</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1345-2690</orcidid><orcidid>https://orcid.org/0000-0003-1470-1951</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-0623-652X</orcidid><orcidid>https://orcid.org/0000-0002-3717-2696</orcidid><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid><orcidid>https://orcid.org/0000-0001-5220-1611</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0001-8103-4285</orcidid><orcidid>https://orcid.org/0000-0002-0985-8316</orcidid><orcidid>https://orcid.org/0000-0001-9852-1645</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></search><sort><creationdate>20201009</creationdate><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><author>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbonates</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Covalent bonds</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Graphite</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Phosphorus</topic><topic>Polyanilines</topic><topic>Potassium</topic><topic>Stability</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chuang, Chenghao</creatorcontrib><creatorcontrib>Li, Wangda</creatorcontrib><creatorcontrib>Wang, Haiyun</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Zhang, Taiming</creatorcontrib><creatorcontrib>Wan, Yangyang</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Hongchang</au><au>Xin, Sen</au><au>Chuang, Chenghao</au><au>Li, Wangda</au><au>Wang, Haiyun</au><au>Zhu, Jian</au><au>Xie, Huanyu</au><au>Zhang, Taiming</au><au>Wan, Yangyang</au><au>Qi, Zhikai</au><au>Yan, Wensheng</au><au>Lu, Ying-Rui</au><au>Chan, Ting-Shan</au><au>Wu, Xiaojun</au><au>Goodenough, John B.</au><au>Ji, Hengxing</au><au>Duan, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>370</volume><issue>6513</issue><spage>192</spage><epage>197</epage><pages>192-197</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin
et al.
developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability.
Science
, this issue p.
192
Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life.
High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li
+
entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li
+
transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aav5842</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1345-2690</orcidid><orcidid>https://orcid.org/0000-0003-1470-1951</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-0623-652X</orcidid><orcidid>https://orcid.org/0000-0002-3717-2696</orcidid><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid><orcidid>https://orcid.org/0000-0001-5220-1611</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0001-8103-4285</orcidid><orcidid>https://orcid.org/0000-0002-0985-8316</orcidid><orcidid>https://orcid.org/0000-0001-9852-1645</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.192-197 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449953310 |
source | Science Online_科学在线; Alma/SFX Local Collection |
subjects | Anodes Batteries Carbon Carbonates Cathodes Charging Covalent bonds Electric vehicles Electrode materials Electrolytes Fluorides Graphite Interfaces Lithium Phosphorus Polyanilines Potassium Stability Storage batteries |
title | Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20phosphorus%20composites%20with%20engineered%20interfaces%20for%20high-rate%20high-capacity%20lithium%20storage&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jin,%20Hongchang&rft.date=2020-10-09&rft.volume=370&rft.issue=6513&rft.spage=192&rft.epage=197&rft.pages=192-197&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav5842&rft_dat=%3Cproquest_cross%3E2449501393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449501393&rft_id=info:pmid/&rfr_iscdi=true |