Loading…

Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage

A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithia...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2020-10, Vol.370 (6513), p.192-197
Main Authors: Jin, Hongchang, Xin, Sen, Chuang, Chenghao, Li, Wangda, Wang, Haiyun, Zhu, Jian, Xie, Huanyu, Zhang, Taiming, Wan, Yangyang, Qi, Zhikai, Yan, Wensheng, Lu, Ying-Rui, Chan, Ting-Shan, Wu, Xiaojun, Goodenough, John B., Ji, Hengxing, Duan, Xiangfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3
cites cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3
container_end_page 197
container_issue 6513
container_start_page 192
container_title Science (American Association for the Advancement of Science)
container_volume 370
creator Jin, Hongchang
Xin, Sen
Chuang, Chenghao
Li, Wangda
Wang, Haiyun
Zhu, Jian
Xie, Huanyu
Zhang, Taiming
Wan, Yangyang
Qi, Zhikai
Yan, Wensheng
Lu, Ying-Rui
Chan, Ting-Shan
Wu, Xiaojun
Goodenough, John B.
Ji, Hengxing
Duan, Xiangfeng
description A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability. Science , this issue p. 192 Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life. High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li + entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li + transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.
doi_str_mv 10.1126/science.aav5842
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449953310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2449501393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqUws1piYUl7sfPlESq-pEosMEeufWlckjjYDqj_HkM7MZzupPe50-kh5DqFRZqyYumVwUHhQsqvvMrYCZmlIPJEMOCnZAbAi6SCMj8nF97vAGIm-Ixs7jupPujYWh_LTZ4q24_Wm4CefpvQUhy2ZkB0qKkZArpGqhg11tHWbNvEyYCHSclRKhP2tItrZuqpD9bJLV6Ss0Z2Hq-OfU7eHx_eVs_J-vXpZXW3ThQHFhJW5JmohNIlF1WhSqFL5JtcM6WKTQagK9Sgs4ZVMRGlLphooKw0EyVnWaH4nNwe7o7Ofk7oQ90br7Dr5IB28jXLMiFyzlOI6M0_dGcnN8Tv_qgcUi54pJYHSjnrvcOmHp3ppdvXKdS_zuuj8_ronP8ATZl3-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449501393</pqid></control><display><type>article</type><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><source>Science Online_科学在线</source><source>Alma/SFX Local Collection</source><creator>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</creator><creatorcontrib>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</creatorcontrib><description>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability. Science , this issue p. 192 Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life. High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li + entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li + transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav5842</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Anodes ; Batteries ; Carbon ; Carbonates ; Cathodes ; Charging ; Covalent bonds ; Electric vehicles ; Electrode materials ; Electrolytes ; Fluorides ; Graphite ; Interfaces ; Lithium ; Phosphorus ; Polyanilines ; Potassium ; Stability ; Storage batteries</subject><ispartof>Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.192-197</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</citedby><cites>FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</cites><orcidid>0000-0003-1345-2690 ; 0000-0003-1470-1951 ; 0000-0001-8161-1521 ; 0000-0003-3606-1211 ; 0000-0002-6002-5627 ; 0000-0002-0623-652X ; 0000-0002-3717-2696 ; 0000-0001-9350-3034 ; 0000-0001-5220-1611 ; 0000-0002-4321-6288 ; 0000-0001-8103-4285 ; 0000-0002-0985-8316 ; 0000-0001-9852-1645 ; 0000-0003-2851-9878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids></links><search><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chuang, Chenghao</creatorcontrib><creatorcontrib>Li, Wangda</creatorcontrib><creatorcontrib>Wang, Haiyun</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Zhang, Taiming</creatorcontrib><creatorcontrib>Wan, Yangyang</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><title>Science (American Association for the Advancement of Science)</title><description>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability. Science , this issue p. 192 Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life. High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li + entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li + transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Carbonates</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Covalent bonds</subject><subject>Electric vehicles</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Fluorides</subject><subject>Graphite</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Phosphorus</subject><subject>Polyanilines</subject><subject>Potassium</subject><subject>Stability</subject><subject>Storage batteries</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqUws1piYUl7sfPlESq-pEosMEeufWlckjjYDqj_HkM7MZzupPe50-kh5DqFRZqyYumVwUHhQsqvvMrYCZmlIPJEMOCnZAbAi6SCMj8nF97vAGIm-Ixs7jupPujYWh_LTZ4q24_Wm4CefpvQUhy2ZkB0qKkZArpGqhg11tHWbNvEyYCHSclRKhP2tItrZuqpD9bJLV6Ss0Z2Hq-OfU7eHx_eVs_J-vXpZXW3ThQHFhJW5JmohNIlF1WhSqFL5JtcM6WKTQagK9Sgs4ZVMRGlLphooKw0EyVnWaH4nNwe7o7Ofk7oQ90br7Dr5IB28jXLMiFyzlOI6M0_dGcnN8Tv_qgcUi54pJYHSjnrvcOmHp3ppdvXKdS_zuuj8_ronP8ATZl3-A</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Jin, Hongchang</creator><creator>Xin, Sen</creator><creator>Chuang, Chenghao</creator><creator>Li, Wangda</creator><creator>Wang, Haiyun</creator><creator>Zhu, Jian</creator><creator>Xie, Huanyu</creator><creator>Zhang, Taiming</creator><creator>Wan, Yangyang</creator><creator>Qi, Zhikai</creator><creator>Yan, Wensheng</creator><creator>Lu, Ying-Rui</creator><creator>Chan, Ting-Shan</creator><creator>Wu, Xiaojun</creator><creator>Goodenough, John B.</creator><creator>Ji, Hengxing</creator><creator>Duan, Xiangfeng</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1345-2690</orcidid><orcidid>https://orcid.org/0000-0003-1470-1951</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-0623-652X</orcidid><orcidid>https://orcid.org/0000-0002-3717-2696</orcidid><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid><orcidid>https://orcid.org/0000-0001-5220-1611</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0001-8103-4285</orcidid><orcidid>https://orcid.org/0000-0002-0985-8316</orcidid><orcidid>https://orcid.org/0000-0001-9852-1645</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></search><sort><creationdate>20201009</creationdate><title>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</title><author>Jin, Hongchang ; Xin, Sen ; Chuang, Chenghao ; Li, Wangda ; Wang, Haiyun ; Zhu, Jian ; Xie, Huanyu ; Zhang, Taiming ; Wan, Yangyang ; Qi, Zhikai ; Yan, Wensheng ; Lu, Ying-Rui ; Chan, Ting-Shan ; Wu, Xiaojun ; Goodenough, John B. ; Ji, Hengxing ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Carbonates</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Covalent bonds</topic><topic>Electric vehicles</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Fluorides</topic><topic>Graphite</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Phosphorus</topic><topic>Polyanilines</topic><topic>Potassium</topic><topic>Stability</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Hongchang</creatorcontrib><creatorcontrib>Xin, Sen</creatorcontrib><creatorcontrib>Chuang, Chenghao</creatorcontrib><creatorcontrib>Li, Wangda</creatorcontrib><creatorcontrib>Wang, Haiyun</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Xie, Huanyu</creatorcontrib><creatorcontrib>Zhang, Taiming</creatorcontrib><creatorcontrib>Wan, Yangyang</creatorcontrib><creatorcontrib>Qi, Zhikai</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><creatorcontrib>Lu, Ying-Rui</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Ji, Hengxing</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Hongchang</au><au>Xin, Sen</au><au>Chuang, Chenghao</au><au>Li, Wangda</au><au>Wang, Haiyun</au><au>Zhu, Jian</au><au>Xie, Huanyu</au><au>Zhang, Taiming</au><au>Wan, Yangyang</au><au>Qi, Zhikai</au><au>Yan, Wensheng</au><au>Lu, Ying-Rui</au><au>Chan, Ting-Shan</au><au>Wu, Xiaojun</au><au>Goodenough, John B.</au><au>Ji, Hengxing</au><au>Duan, Xiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>370</volume><issue>6513</issue><spage>192</spage><epage>197</epage><pages>192-197</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A focus of battery research has been the development of a range of lithium, sodium, and potassium cathodes, but improving anode materials is also an important goal. Silicon has shown some promise for replacing graphite because of its exceptional capacity, but the dramatic volume change during lithiation-delithiation processes often leads to failure. Jin et al. developed a composite that is made of black phosphorous and graphite in its core and covered with swollen polyaniline. In contrast to previous efforts, bonding between the carbon and phosphorous allows for a high charging rate without sacrifices in capacity and cycling stability. Science , this issue p. 192 Black phosphorus composites with engineered interfaces deliver high capacity, high rate capability, and long cycle life. High-rate lithium (Li) ion batteries that can be charged in minutes and store enough energy for a 350-mile driving range are highly desired for all-electric vehicles. A high charging rate usually leads to sacrifices in capacity and cycling stability. We report use of black phosphorus (BP) as the active anode for high-rate, high-capacity Li storage. The formation of covalent bonds with graphitic carbon restrains edge reconstruction in layered BP particles to ensure open edges for fast Li + entry; the coating of the covalently bonded BP-graphite particles with electrolyte-swollen polyaniline yields a stable solid–electrolyte interphase and inhibits the continuous growth of poorly conducting Li fluorides and carbonates to ensure efficient Li + transport. The resultant composite anode demonstrates an excellent combination of capacity, rate, and cycling endurance.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aav5842</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1345-2690</orcidid><orcidid>https://orcid.org/0000-0003-1470-1951</orcidid><orcidid>https://orcid.org/0000-0001-8161-1521</orcidid><orcidid>https://orcid.org/0000-0003-3606-1211</orcidid><orcidid>https://orcid.org/0000-0002-6002-5627</orcidid><orcidid>https://orcid.org/0000-0002-0623-652X</orcidid><orcidid>https://orcid.org/0000-0002-3717-2696</orcidid><orcidid>https://orcid.org/0000-0001-9350-3034</orcidid><orcidid>https://orcid.org/0000-0001-5220-1611</orcidid><orcidid>https://orcid.org/0000-0002-4321-6288</orcidid><orcidid>https://orcid.org/0000-0001-8103-4285</orcidid><orcidid>https://orcid.org/0000-0002-0985-8316</orcidid><orcidid>https://orcid.org/0000-0001-9852-1645</orcidid><orcidid>https://orcid.org/0000-0003-2851-9878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-10, Vol.370 (6513), p.192-197
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2449953310
source Science Online_科学在线; Alma/SFX Local Collection
subjects Anodes
Batteries
Carbon
Carbonates
Cathodes
Charging
Covalent bonds
Electric vehicles
Electrode materials
Electrolytes
Fluorides
Graphite
Interfaces
Lithium
Phosphorus
Polyanilines
Potassium
Stability
Storage batteries
title Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T11%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20phosphorus%20composites%20with%20engineered%20interfaces%20for%20high-rate%20high-capacity%20lithium%20storage&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jin,%20Hongchang&rft.date=2020-10-09&rft.volume=370&rft.issue=6513&rft.spage=192&rft.epage=197&rft.pages=192-197&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav5842&rft_dat=%3Cproquest_cross%3E2449501393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-2654989cd73986c79d7e3b5d2cc6b400d8ed0d4f289d797d629f078d2973246c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2449501393&rft_id=info:pmid/&rfr_iscdi=true