Loading…
Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials
Purpose Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) an...
Saved in:
Published in: | International ophthalmology 2021-02, Vol.41 (2), p.587-598 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83 |
container_end_page | 598 |
container_issue | 2 |
container_start_page | 587 |
container_title | International ophthalmology |
container_volume | 41 |
creator | Zheng, Xiaowei Xu, Guanghua Wang, Yunyun Du, Chenghang Liang, Renghao Zhang, Kai Jia, Yaguang Du, Yuhui Zhang, Sicong |
description | Purpose
Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) and compare the results with subjective Farnsworth–Munsell (FM) 100-hue test results.
Methods
A red-green SSVEP pattern reversal checkboard paradigm at different luminance ratios was used to induce visual evoked potentials (VEPs) from 15 color vision deficiencies (CVDs) and 11 normal color vision subjects. After electroencephalography signals were processed by canonical correlation analysis, an equiluminance turning curve corresponding to the activation of the
L
-cones and
M
-cones at different levels of color vision was established. Then, we obtained different equiluminance
T
and proposed the SSVEP color vision severity index (
I
CVD
) to quantify color vision function and the severity of CVDs. In addition, the FM 100-hue test was used to obtain subjective data for the diagnosis of color vision.
Results
The value of
I
CVD
can be an indicator of the level of color vision. Both the total error scores (TES) and confusion index (
C
-index) of the FM 100-hue test were significantly correlated with
I
CVD
values (
P
|
doi_str_mv | 10.1007/s10792-020-01613-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2449996043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489114497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83</originalsourceid><addsrcrecordid>eNp9kU1LHTEYhYO01FvtH3BRAm66SU0mmXwsRewHCCLUdcjHO5Lbucl1MnNBf73Rayt00UV4Sd7nnBM4CJ0w-pVRqs4qo8p0hHaUUCYZJ48HaMV6xUknOX2HVu21J72i7BB9rHVNKTXKyA_okHMqhFR0hbY3i8tzmt2cdoBdjrj4NYSXW0zuLpeaKi4DDmUsE96lmkrGEYYUEuR2KvauQpNlXGdw8YHUZgbP5OJGDLvyu223ZYYW48Z6jN4PbcCn13mEbr9d_rr4Qa6uv_-8OL8igat-JjFo50PnowYt9BCNDDIOihnhFeu9MIyxKIPQfeiY0J3UgxAsqsCdN-A1P0Jf9r7bqdwvUGe7STXAOLoMZam2E8IYI6ngDT39B12XZcrtd43SLamhqlHdngpTqXWCwW6ntHHTg2XUPvdh933Y1od96cM-NtHnV-vFbyD-lfwpoAF8D9S2yncwvWX_x_YJtv6YDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489114497</pqid></control><display><type>article</type><title>Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials</title><source>Springer Nature</source><creator>Zheng, Xiaowei ; Xu, Guanghua ; Wang, Yunyun ; Du, Chenghang ; Liang, Renghao ; Zhang, Kai ; Jia, Yaguang ; Du, Yuhui ; Zhang, Sicong</creator><creatorcontrib>Zheng, Xiaowei ; Xu, Guanghua ; Wang, Yunyun ; Du, Chenghang ; Liang, Renghao ; Zhang, Kai ; Jia, Yaguang ; Du, Yuhui ; Zhang, Sicong</creatorcontrib><description>Purpose
Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) and compare the results with subjective Farnsworth–Munsell (FM) 100-hue test results.
Methods
A red-green SSVEP pattern reversal checkboard paradigm at different luminance ratios was used to induce visual evoked potentials (VEPs) from 15 color vision deficiencies (CVDs) and 11 normal color vision subjects. After electroencephalography signals were processed by canonical correlation analysis, an equiluminance turning curve corresponding to the activation of the
L
-cones and
M
-cones at different levels of color vision was established. Then, we obtained different equiluminance
T
and proposed the SSVEP color vision severity index (
I
CVD
) to quantify color vision function and the severity of CVDs. In addition, the FM 100-hue test was used to obtain subjective data for the diagnosis of color vision.
Results
The value of
I
CVD
can be an indicator of the level of color vision. Both the total error scores (TES) and confusion index (
C
-index) of the FM 100-hue test were significantly correlated with
I
CVD
values (
P
< 0.001, respectively).
I
CVD
also had a good classification effect in detecting normals, anomalous trichromats and dichromats. Moreover, equiluminance
T
had a good effect on classifying protans and deutans in subjects with CVDs.
Conclusion
Color vision evaluation with sweep SSVEPs showed a good correlation with subjective psychophysical methods. SSVEPs can be an objective and quantitative method to test color vision and diagnose CVDs.</description><identifier>ISSN: 0165-5701</identifier><identifier>EISSN: 1573-2630</identifier><identifier>DOI: 10.1007/s10792-020-01613-z</identifier><identifier>PMID: 33044670</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Classification ; Cognitive ability ; Color blindness ; Color vision ; Cones ; Correlation analysis ; Diagnosis ; EEG ; Electroencephalography ; Evoked potentials ; Medicine ; Medicine & Public Health ; Ophthalmology ; Original Paper ; Primates ; Psychophysics ; Quantitative analysis ; Signal processing ; Steady state ; Visual evoked potentials</subject><ispartof>International ophthalmology, 2021-02, Vol.41 (2), p.587-598</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83</citedby><cites>FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83</cites><orcidid>0000-0002-8684-7055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33044670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Guanghua</creatorcontrib><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Du, Chenghang</creatorcontrib><creatorcontrib>Liang, Renghao</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Jia, Yaguang</creatorcontrib><creatorcontrib>Du, Yuhui</creatorcontrib><creatorcontrib>Zhang, Sicong</creatorcontrib><title>Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials</title><title>International ophthalmology</title><addtitle>Int Ophthalmol</addtitle><addtitle>Int Ophthalmol</addtitle><description>Purpose
Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) and compare the results with subjective Farnsworth–Munsell (FM) 100-hue test results.
Methods
A red-green SSVEP pattern reversal checkboard paradigm at different luminance ratios was used to induce visual evoked potentials (VEPs) from 15 color vision deficiencies (CVDs) and 11 normal color vision subjects. After electroencephalography signals were processed by canonical correlation analysis, an equiluminance turning curve corresponding to the activation of the
L
-cones and
M
-cones at different levels of color vision was established. Then, we obtained different equiluminance
T
and proposed the SSVEP color vision severity index (
I
CVD
) to quantify color vision function and the severity of CVDs. In addition, the FM 100-hue test was used to obtain subjective data for the diagnosis of color vision.
Results
The value of
I
CVD
can be an indicator of the level of color vision. Both the total error scores (TES) and confusion index (
C
-index) of the FM 100-hue test were significantly correlated with
I
CVD
values (
P
< 0.001, respectively).
I
CVD
also had a good classification effect in detecting normals, anomalous trichromats and dichromats. Moreover, equiluminance
T
had a good effect on classifying protans and deutans in subjects with CVDs.
Conclusion
Color vision evaluation with sweep SSVEPs showed a good correlation with subjective psychophysical methods. SSVEPs can be an objective and quantitative method to test color vision and diagnose CVDs.</description><subject>Classification</subject><subject>Cognitive ability</subject><subject>Color blindness</subject><subject>Color vision</subject><subject>Cones</subject><subject>Correlation analysis</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Evoked potentials</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Primates</subject><subject>Psychophysics</subject><subject>Quantitative analysis</subject><subject>Signal processing</subject><subject>Steady state</subject><subject>Visual evoked potentials</subject><issn>0165-5701</issn><issn>1573-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LHTEYhYO01FvtH3BRAm66SU0mmXwsRewHCCLUdcjHO5Lbucl1MnNBf73Rayt00UV4Sd7nnBM4CJ0w-pVRqs4qo8p0hHaUUCYZJ48HaMV6xUknOX2HVu21J72i7BB9rHVNKTXKyA_okHMqhFR0hbY3i8tzmt2cdoBdjrj4NYSXW0zuLpeaKi4DDmUsE96lmkrGEYYUEuR2KvauQpNlXGdw8YHUZgbP5OJGDLvyu223ZYYW48Z6jN4PbcCn13mEbr9d_rr4Qa6uv_-8OL8igat-JjFo50PnowYt9BCNDDIOihnhFeu9MIyxKIPQfeiY0J3UgxAsqsCdN-A1P0Jf9r7bqdwvUGe7STXAOLoMZam2E8IYI6ngDT39B12XZcrtd43SLamhqlHdngpTqXWCwW6ntHHTg2XUPvdh933Y1od96cM-NtHnV-vFbyD-lfwpoAF8D9S2yncwvWX_x_YJtv6YDw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zheng, Xiaowei</creator><creator>Xu, Guanghua</creator><creator>Wang, Yunyun</creator><creator>Du, Chenghang</creator><creator>Liang, Renghao</creator><creator>Zhang, Kai</creator><creator>Jia, Yaguang</creator><creator>Du, Yuhui</creator><creator>Zhang, Sicong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8684-7055</orcidid></search><sort><creationdate>20210201</creationdate><title>Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials</title><author>Zheng, Xiaowei ; Xu, Guanghua ; Wang, Yunyun ; Du, Chenghang ; Liang, Renghao ; Zhang, Kai ; Jia, Yaguang ; Du, Yuhui ; Zhang, Sicong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Cognitive ability</topic><topic>Color blindness</topic><topic>Color vision</topic><topic>Cones</topic><topic>Correlation analysis</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Evoked potentials</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Primates</topic><topic>Psychophysics</topic><topic>Quantitative analysis</topic><topic>Signal processing</topic><topic>Steady state</topic><topic>Visual evoked potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Xu, Guanghua</creatorcontrib><creatorcontrib>Wang, Yunyun</creatorcontrib><creatorcontrib>Du, Chenghang</creatorcontrib><creatorcontrib>Liang, Renghao</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Jia, Yaguang</creatorcontrib><creatorcontrib>Du, Yuhui</creatorcontrib><creatorcontrib>Zhang, Sicong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaowei</au><au>Xu, Guanghua</au><au>Wang, Yunyun</au><au>Du, Chenghang</au><au>Liang, Renghao</au><au>Zhang, Kai</au><au>Jia, Yaguang</au><au>Du, Yuhui</au><au>Zhang, Sicong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials</atitle><jtitle>International ophthalmology</jtitle><stitle>Int Ophthalmol</stitle><addtitle>Int Ophthalmol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>41</volume><issue>2</issue><spage>587</spage><epage>598</epage><pages>587-598</pages><issn>0165-5701</issn><eissn>1573-2630</eissn><abstract>Purpose
Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) and compare the results with subjective Farnsworth–Munsell (FM) 100-hue test results.
Methods
A red-green SSVEP pattern reversal checkboard paradigm at different luminance ratios was used to induce visual evoked potentials (VEPs) from 15 color vision deficiencies (CVDs) and 11 normal color vision subjects. After electroencephalography signals were processed by canonical correlation analysis, an equiluminance turning curve corresponding to the activation of the
L
-cones and
M
-cones at different levels of color vision was established. Then, we obtained different equiluminance
T
and proposed the SSVEP color vision severity index (
I
CVD
) to quantify color vision function and the severity of CVDs. In addition, the FM 100-hue test was used to obtain subjective data for the diagnosis of color vision.
Results
The value of
I
CVD
can be an indicator of the level of color vision. Both the total error scores (TES) and confusion index (
C
-index) of the FM 100-hue test were significantly correlated with
I
CVD
values (
P
< 0.001, respectively).
I
CVD
also had a good classification effect in detecting normals, anomalous trichromats and dichromats. Moreover, equiluminance
T
had a good effect on classifying protans and deutans in subjects with CVDs.
Conclusion
Color vision evaluation with sweep SSVEPs showed a good correlation with subjective psychophysical methods. SSVEPs can be an objective and quantitative method to test color vision and diagnose CVDs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33044670</pmid><doi>10.1007/s10792-020-01613-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8684-7055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-5701 |
ispartof | International ophthalmology, 2021-02, Vol.41 (2), p.587-598 |
issn | 0165-5701 1573-2630 |
language | eng |
recordid | cdi_proquest_miscellaneous_2449996043 |
source | Springer Nature |
subjects | Classification Cognitive ability Color blindness Color vision Cones Correlation analysis Diagnosis EEG Electroencephalography Evoked potentials Medicine Medicine & Public Health Ophthalmology Original Paper Primates Psychophysics Quantitative analysis Signal processing Steady state Visual evoked potentials |
title | Quantitative and objective diagnosis of color vision deficiencies based on steady-state visual evoked potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20and%20objective%20diagnosis%20of%20color%20vision%20deficiencies%20based%20on%20steady-state%20visual%20evoked%20potentials&rft.jtitle=International%20ophthalmology&rft.au=Zheng,%20Xiaowei&rft.date=2021-02-01&rft.volume=41&rft.issue=2&rft.spage=587&rft.epage=598&rft.pages=587-598&rft.issn=0165-5701&rft.eissn=1573-2630&rft_id=info:doi/10.1007/s10792-020-01613-z&rft_dat=%3Cproquest_cross%3E2489114497%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-dc8abc2bd8e848fd96c6df7194b715b49111d6c485c2148268f441d7c3ab9eb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2489114497&rft_id=info:pmid/33044670&rfr_iscdi=true |