Loading…

Hybrid Lead Iodide Perovskites with Mixed Cations of Thiourea and Methylamine, From One Dimension to Three Dimensions

Hybrid halide perovskites featuring as new materials of high-performance solar cells have attracted great research interest. The temperature-dependent dimensional transition of halide perovskites is a crucial handle in the preparation of perovskite films. Only the small cations of methylammonium (MA...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2020-11, Vol.59 (21), p.15842-15847
Main Authors: Yu, Shuai-Kang, Xu, Nan-Nan, Jiang, Miao, Weng, Yi-Gang, Zhu, Qin-Yu, Dai, Jie
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid halide perovskites featuring as new materials of high-performance solar cells have attracted great research interest. The temperature-dependent dimensional transition of halide perovskites is a crucial handle in the preparation of perovskite films. Only the small cations of methylammonium (MA) or formamidinium (FA) have been involved for most of the dimensional transition materials. In this work, thiourea (tu) is introduced into hybrid halide materials. A new series of 1D ribbonlike hybrid lead iodides with tu and MA cations are reported that were crystallographically characterized as MA n (Htu) n+1Pb n I4n+1 (n = 1–4 denoted as 1–4, respectively; in 1, MA is replaced by tu). The width of the perovskite ribbon increases from one PbI6 octahedron to four corner-fused octahedra. Compounds 2 and 3 can be turned into a black 3D perovskite after annealing. This is an unusual mixed MA–tu hybrid halide perovskite system, in which the tu molecule plays an important role in manipulating the dimensions and their photoconductive properties. Scanning electron microscopy of the blackened sample shows that there are a lot of regular vent holes on the smooth crystal surface with sizes of hundreds of nanometers. The tunable structures and porous crystals might be advantageous in the sense of material modulation.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.0c02280