Loading…

Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications

We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially high...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2021-04, Vol.32 (14), p.142003-142003
Main Authors: Lewis, Jacob S, Perrier, Timothy, Barani, Zahra, Kargar, Fariborz, Balandin, Alexander A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3
cites cdi_FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3
container_end_page 142003
container_issue 14
container_start_page 142003
container_title Nanotechnology
container_volume 32
creator Lewis, Jacob S
Perrier, Timothy
Barani, Zahra
Kargar, Fariborz
Balandin, Alexander A
description We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.
doi_str_mv 10.1088/1361-6528/abc0c6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2451137149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451137149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMyGPDITaiZM4bKjiS6rEUmbLcc7EJYmD7VDx70nVj43JZ99z78kPQteU3FPC-ZwmGY2yNOZzWSqishM0PT6doikp0jxijLMJuvB-TQilPKbnaJIkhBV5zKZoWNXgWtlg0wVwWirArRwrIxuPNybU-NPJvoYOsDZNA84_YAc_BjbYahxqwD6M_OEiXcCyq7AdQmPtF9bWYT2EwY2tvm-MksHYzl-iMz0ugKv9OUMfz0-rxWu0fH95WzwuI5UkWYhAcZbmvMxKpghPQfKKFpVOKg6qUhBrRqnMWJ4WOZcq5pzQjCpWqELpvMp0MkO3u9ze2e8BfBCt8QqaRnZgBy9illKa5JQVI0p2qHLWewda9M600v0KSsRWttiaFVuzYid7HLnZpw9lC9Vx4GB3BO52gLG9WNvBdeNn_8_7AxSiivE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451137149</pqid></control><display><type>article</type><title>Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Lewis, Jacob S ; Perrier, Timothy ; Barani, Zahra ; Kargar, Fariborz ; Balandin, Alexander A</creator><creatorcontrib>Lewis, Jacob S ; Perrier, Timothy ; Barani, Zahra ; Kargar, Fariborz ; Balandin, Alexander A</creatorcontrib><description>We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc0c6</identifier><identifier>PMID: 33049724</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>boron nitride ; graphene ; polymer composites ; synergistic enhancement ; thermal conductivity ; thermal management ; thermal percolation</subject><ispartof>Nanotechnology, 2021-04, Vol.32 (14), p.142003-142003</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3</citedby><cites>FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3</cites><orcidid>0000-0002-9944-7894 ; 0000-0003-4996-4233 ; 0000-0002-5452-2045 ; 0000-0003-2192-2023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33049724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Jacob S</creatorcontrib><creatorcontrib>Perrier, Timothy</creatorcontrib><creatorcontrib>Barani, Zahra</creatorcontrib><creatorcontrib>Kargar, Fariborz</creatorcontrib><creatorcontrib>Balandin, Alexander A</creatorcontrib><title>Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.</description><subject>boron nitride</subject><subject>graphene</subject><subject>polymer composites</subject><subject>synergistic enhancement</subject><subject>thermal conductivity</subject><subject>thermal management</subject><subject>thermal percolation</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMyGPDITaiZM4bKjiS6rEUmbLcc7EJYmD7VDx70nVj43JZ99z78kPQteU3FPC-ZwmGY2yNOZzWSqishM0PT6doikp0jxijLMJuvB-TQilPKbnaJIkhBV5zKZoWNXgWtlg0wVwWirArRwrIxuPNybU-NPJvoYOsDZNA84_YAc_BjbYahxqwD6M_OEiXcCyq7AdQmPtF9bWYT2EwY2tvm-MksHYzl-iMz0ugKv9OUMfz0-rxWu0fH95WzwuI5UkWYhAcZbmvMxKpghPQfKKFpVOKg6qUhBrRqnMWJ4WOZcq5pzQjCpWqELpvMp0MkO3u9ze2e8BfBCt8QqaRnZgBy9illKa5JQVI0p2qHLWewda9M600v0KSsRWttiaFVuzYid7HLnZpw9lC9Vx4GB3BO52gLG9WNvBdeNn_8_7AxSiivE</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Lewis, Jacob S</creator><creator>Perrier, Timothy</creator><creator>Barani, Zahra</creator><creator>Kargar, Fariborz</creator><creator>Balandin, Alexander A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9944-7894</orcidid><orcidid>https://orcid.org/0000-0003-4996-4233</orcidid><orcidid>https://orcid.org/0000-0002-5452-2045</orcidid><orcidid>https://orcid.org/0000-0003-2192-2023</orcidid></search><sort><creationdate>20210402</creationdate><title>Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications</title><author>Lewis, Jacob S ; Perrier, Timothy ; Barani, Zahra ; Kargar, Fariborz ; Balandin, Alexander A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>boron nitride</topic><topic>graphene</topic><topic>polymer composites</topic><topic>synergistic enhancement</topic><topic>thermal conductivity</topic><topic>thermal management</topic><topic>thermal percolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Jacob S</creatorcontrib><creatorcontrib>Perrier, Timothy</creatorcontrib><creatorcontrib>Barani, Zahra</creatorcontrib><creatorcontrib>Kargar, Fariborz</creatorcontrib><creatorcontrib>Balandin, Alexander A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Jacob S</au><au>Perrier, Timothy</au><au>Barani, Zahra</au><au>Kargar, Fariborz</au><au>Balandin, Alexander A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>32</volume><issue>14</issue><spage>142003</spage><epage>142003</epage><pages>142003-142003</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>We review the current state-of-the-art graphene-enhanced thermal interface materials for the management of heat in the next generation of electronics. Increased integration densities, speed and power of electronic and optoelectronic devices require thermal interface materials with substantially higher thermal conductivity, improved reliability, and lower cost. Graphene has emerged as a promising filler material that can meet the demands of future high-speed and high-powered electronics. This review describes the use of graphene as a filler in curing and non-curing polymer matrices. Special attention is given to strategies for achieving the thermal percolation threshold with its corresponding characteristic increase in the overall thermal conductivity. Many applications require high thermal conductivity of composites, while simultaneously preserving electrical insulation. A hybrid filler approach, using graphene and boron nitride, is presented as a possible technology providing for the independent control of electrical and thermal conduction. The reliability and lifespan performance of thermal interface materials is an important consideration towards the determination of appropriate practical applications. The present review addresses these issues in detail, demonstrating the promise of graphene-enhanced thermal interface materials compared to alternative technologies.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33049724</pmid><doi>10.1088/1361-6528/abc0c6</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-9944-7894</orcidid><orcidid>https://orcid.org/0000-0003-4996-4233</orcidid><orcidid>https://orcid.org/0000-0002-5452-2045</orcidid><orcidid>https://orcid.org/0000-0003-2192-2023</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2021-04, Vol.32 (14), p.142003-142003
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_2451137149
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects boron nitride
graphene
polymer composites
synergistic enhancement
thermal conductivity
thermal management
thermal percolation
title Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20interface%20materials%20with%20graphene%20fillers:%20review%20of%20the%20state%20of%20the%20art%20and%20outlook%20for%20future%20applications&rft.jtitle=Nanotechnology&rft.au=Lewis,%20Jacob%20S&rft.date=2021-04-02&rft.volume=32&rft.issue=14&rft.spage=142003&rft.epage=142003&rft.pages=142003-142003&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc0c6&rft_dat=%3Cproquest_cross%3E2451137149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ec84578b6b4c085ea8d19df3d8ecdce2f411a6475978ac2880161c49c9cf7d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2451137149&rft_id=info:pmid/33049724&rfr_iscdi=true