Loading…

Next generation quorum sensing inhibitors: Accounts on structure activity relationship studies and biological activities

[Display omitted] Bacterial resistance is a growing threat which represents major scourge throughout the world. The suitable way to control the present critical situation of antimicrobial resistance would be to develop entirely novel strategies to fight antibiotic resistant pathogens such as quorum...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry 2020-11, Vol.28 (21), p.115728-115728, Article 115728
Main Authors: Majik, Mahesh S., Gawas, Umesh B., Mandrekar, Vinod K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Bacterial resistance is a growing threat which represents major scourge throughout the world. The suitable way to control the present critical situation of antimicrobial resistance would be to develop entirely novel strategies to fight antibiotic resistant pathogens such as quorum sensing (QS) inhibitors or its combination with antibiotics. Anti QS agents can eliminate the QS signals and put the barrier in bio-film formation, consequently, bacterial virulence will be reduced without causing drug-resistance to the pathogens. Among the various anti QS agents identified, especially those of natural origin, furanones or acylatedhomoserine lactones (AHLs) are most popular. Semi-synthetic and synthetic inhibitors have shown greatest potential and have inspired chemists to design synthetically modified QS inhibitors with lactone moiety. This review focuses on anti QS agents (bio-film inhibitors) of both natural and synthetic origins. Further, the synthesis, structure activity relationship and anti QS activity covering literature from 2015 till March 2020 has been discussed.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2020.115728