Loading…

Radiosynthesis and quality control testing of the tau imaging positron emission tomography tracer 18 FPM-PBB3 for clinical applications

Recently, we produced 11 C-labeled 2-((1E,3E)-4-(6-(methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) as a clinically useful positron emission tomography (PET) tracer for in vivo imaging of tau pathologies in the human brain. To overcome the limitations (i.e., rapid in vivo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of labelled compounds & radiopharmaceuticals 2021-03, Vol.64 (3), p.109
Main Authors: Kawamura, Kazunori, Hashimoto, Hiroki, Furutsuka, Kenji, Ohkubo, Takayuki, Fujishiro, Tomoya, Togashi, Takahiro, Arashi, Daisuke, Sakai, Toshiyuki, Muto, Masatoshi, Ogawa, Masanao, Kurihara, Yusuke, Nengaki, Nobuki, Takei, Makoto, Nemoto, Kazuyoshi, Higuchi, Makoto, Zhang, Ming-Rong
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, we produced 11 C-labeled 2-((1E,3E)-4-(6-(methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) as a clinically useful positron emission tomography (PET) tracer for in vivo imaging of tau pathologies in the human brain. To overcome the limitations (i.e., rapid in vivo metabolism and short half-life) of [11 C]PBB3, we further synthesized 18 F-labeled 1-fluoro-3-((2-((1E,3E)-4-(6-(methylamino)pyridine-3-yl)buta-1,3-dien-1-yl)benzo[d]thiazol-6-yl)oxy)propan-2-ol ([18 F]PM-PBB3). [18 F]PM-PBB3 is also a useful tau PET tracer for imaging tau pathologies. In this study, we developed a routine radiosynthesis and quality control testing of [18 F]PM-PBB3 for clinical applications. [18 F]PM-PBB3 was synthesized by direct 18 F-fluorination of the tosylated derivative, followed by removal of the protecting group. [18 F]PM-PBB3 was obtained with sufficient radioactivity (25 ± 6.0% of the nondecay-corrected radiochemical yield at the end of synthesis, EOS), radiochemical purity (98 ± 0.6%), and molar activity (350 ± 94 GBq/μmol at EOS; n = 53). Moreover, [18 F]PM-PBB3 consistently retained >95% of radiochemical purity for 60 min without undergoing photoisomerization using a new UV-cutoff light (yellow light) fixed in the hot cell to monitor the synthesis. All the results of the quality control testing for the [18 F]PM-PBB3 injection complied with our in-house quality control and quality assurance specifications. We have accomplished >200 production runs of [18 F]PM-PBB3 in our facility for various research purposes.Recently, we produced 11 C-labeled 2-((1E,3E)-4-(6-(methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11 C]PBB3) as a clinically useful positron emission tomography (PET) tracer for in vivo imaging of tau pathologies in the human brain. To overcome the limitations (i.e., rapid in vivo metabolism and short half-life) of [11 C]PBB3, we further synthesized 18 F-labeled 1-fluoro-3-((2-((1E,3E)-4-(6-(methylamino)pyridine-3-yl)buta-1,3-dien-1-yl)benzo[d]thiazol-6-yl)oxy)propan-2-ol ([18 F]PM-PBB3). [18 F]PM-PBB3 is also a useful tau PET tracer for imaging tau pathologies. In this study, we developed a routine radiosynthesis and quality control testing of [18 F]PM-PBB3 for clinical applications. [18 F]PM-PBB3 was synthesized by direct 18 F-fluorination of the tosylated derivative, followed by removal of the protecting group. [18 F]PM-PBB3 was obtained with sufficient radioactivity (25 ± 6.0% of the nondecay-corrected radi
ISSN:1099-1344
1099-1344
DOI:10.1002/jlcr.3890