Loading…
The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells
The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor an...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-11, Vol.32 (47), p.e2005241-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883 |
---|---|
cites | cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883 |
container_end_page | n/a |
container_issue | 47 |
container_start_page | e2005241 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Marina, Sara Kaufmann, Noëmi Petrina Karki, Akchheta Gutiérrez‐Meza, Elizabeth Gutiérrez‐Fernández, Edgar Vollbrecht, Joachim Solano, Eduardo Walker, Barnaby Bannock, James H. de Mello, John Silva, Carlos Nguyen, Thuc‐Quyen Cangialosi, Daniele Stingelin, Natalie Martín, Jaime |
description | The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films ( |
doi_str_mv | 10.1002/adma.202005241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2453684209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453684209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwEvXlon2WSbPS71q1CpYj0v6W7Spuwma7KL9r83paLgxcMwMO_3hsdD6JLAmADQG1k1ckyBAnDKyBEaEE7JiEHGj9EAsoSPspSJU3QWwhYAshTSAdLLjcKzpnW-k7ZU2Gn80kvbGb0zdo27qE5dlIPpjLN7eX_KG-fbjesDntlO-cZ8qgo_b2RQ2Fi88GtpTYlfXS09nqq6DufoRMs6qIvvPURv93fL6eNovniYTfP5qEw4xLAcmOKrhAlFJqC1plWqM5KJhNGqjFPxkhDCCJFsJZSEEkBPKpIBTIgSIhmi68Pf1rv3XoWuaEwoYwJpVYxbUMaTVDAa6xiiqz_o1vXexnSRShOeCBHhIRofqNK7ELzSRetNI_2uIFDsay_2tRc_tUdDdjB8mFrt_qGL_PYp__V-AUyAhVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463538845</pqid></control><display><type>article</type><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</creator><creatorcontrib>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</creatorcontrib><description>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.
The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202005241</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Composition ; fullerene derivatives ; Fullerenes ; Heat measurement ; Heterojunctions ; intermixing ; Materials science ; Morphology ; organic electronics ; organic solar cells ; Phase separation ; Photovoltaic cells ; Polymers ; Scanning ; semiconducting polymers ; Solar cells ; Thickness ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2005241-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</citedby><cites>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</cites><orcidid>0000-0002-9669-7273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marina, Sara</creatorcontrib><creatorcontrib>Kaufmann, Noëmi Petrina</creatorcontrib><creatorcontrib>Karki, Akchheta</creatorcontrib><creatorcontrib>Gutiérrez‐Meza, Elizabeth</creatorcontrib><creatorcontrib>Gutiérrez‐Fernández, Edgar</creatorcontrib><creatorcontrib>Vollbrecht, Joachim</creatorcontrib><creatorcontrib>Solano, Eduardo</creatorcontrib><creatorcontrib>Walker, Barnaby</creatorcontrib><creatorcontrib>Bannock, James H.</creatorcontrib><creatorcontrib>de Mello, John</creatorcontrib><creatorcontrib>Silva, Carlos</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><creatorcontrib>Cangialosi, Daniele</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><creatorcontrib>Martín, Jaime</creatorcontrib><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><title>Advanced materials (Weinheim)</title><description>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.
The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</description><subject>Charge transport</subject><subject>Composition</subject><subject>fullerene derivatives</subject><subject>Fullerenes</subject><subject>Heat measurement</subject><subject>Heterojunctions</subject><subject>intermixing</subject><subject>Materials science</subject><subject>Morphology</subject><subject>organic electronics</subject><subject>organic solar cells</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Scanning</subject><subject>semiconducting polymers</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKtXzwEvXlon2WSbPS71q1CpYj0v6W7Spuwma7KL9r83paLgxcMwMO_3hsdD6JLAmADQG1k1ckyBAnDKyBEaEE7JiEHGj9EAsoSPspSJU3QWwhYAshTSAdLLjcKzpnW-k7ZU2Gn80kvbGb0zdo27qE5dlIPpjLN7eX_KG-fbjesDntlO-cZ8qgo_b2RQ2Fi88GtpTYlfXS09nqq6DufoRMs6qIvvPURv93fL6eNovniYTfP5qEw4xLAcmOKrhAlFJqC1plWqM5KJhNGqjFPxkhDCCJFsJZSEEkBPKpIBTIgSIhmi68Pf1rv3XoWuaEwoYwJpVYxbUMaTVDAa6xiiqz_o1vXexnSRShOeCBHhIRofqNK7ELzSRetNI_2uIFDsay_2tRc_tUdDdjB8mFrt_qGL_PYp__V-AUyAhVs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Marina, Sara</creator><creator>Kaufmann, Noëmi Petrina</creator><creator>Karki, Akchheta</creator><creator>Gutiérrez‐Meza, Elizabeth</creator><creator>Gutiérrez‐Fernández, Edgar</creator><creator>Vollbrecht, Joachim</creator><creator>Solano, Eduardo</creator><creator>Walker, Barnaby</creator><creator>Bannock, James H.</creator><creator>de Mello, John</creator><creator>Silva, Carlos</creator><creator>Nguyen, Thuc‐Quyen</creator><creator>Cangialosi, Daniele</creator><creator>Stingelin, Natalie</creator><creator>Martín, Jaime</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9669-7273</orcidid></search><sort><creationdate>20201101</creationdate><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><author>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Composition</topic><topic>fullerene derivatives</topic><topic>Fullerenes</topic><topic>Heat measurement</topic><topic>Heterojunctions</topic><topic>intermixing</topic><topic>Materials science</topic><topic>Morphology</topic><topic>organic electronics</topic><topic>organic solar cells</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Scanning</topic><topic>semiconducting polymers</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marina, Sara</creatorcontrib><creatorcontrib>Kaufmann, Noëmi Petrina</creatorcontrib><creatorcontrib>Karki, Akchheta</creatorcontrib><creatorcontrib>Gutiérrez‐Meza, Elizabeth</creatorcontrib><creatorcontrib>Gutiérrez‐Fernández, Edgar</creatorcontrib><creatorcontrib>Vollbrecht, Joachim</creatorcontrib><creatorcontrib>Solano, Eduardo</creatorcontrib><creatorcontrib>Walker, Barnaby</creatorcontrib><creatorcontrib>Bannock, James H.</creatorcontrib><creatorcontrib>de Mello, John</creatorcontrib><creatorcontrib>Silva, Carlos</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><creatorcontrib>Cangialosi, Daniele</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><creatorcontrib>Martín, Jaime</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marina, Sara</au><au>Kaufmann, Noëmi Petrina</au><au>Karki, Akchheta</au><au>Gutiérrez‐Meza, Elizabeth</au><au>Gutiérrez‐Fernández, Edgar</au><au>Vollbrecht, Joachim</au><au>Solano, Eduardo</au><au>Walker, Barnaby</au><au>Bannock, James H.</au><au>de Mello, John</au><au>Silva, Carlos</au><au>Nguyen, Thuc‐Quyen</au><au>Cangialosi, Daniele</au><au>Stingelin, Natalie</au><au>Martín, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>47</issue><spage>e2005241</spage><epage>n/a</epage><pages>e2005241-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.
The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202005241</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9669-7273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2005241-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2453684209 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Charge transport Composition fullerene derivatives Fullerenes Heat measurement Heterojunctions intermixing Materials science Morphology organic electronics organic solar cells Phase separation Photovoltaic cells Polymers Scanning semiconducting polymers Solar cells Thickness Thin films |
title | The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Importance%20of%20Quantifying%20the%20Composition%20of%20the%20Amorphous%20Intermixed%20Phase%20in%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Marina,%20Sara&rft.date=2020-11-01&rft.volume=32&rft.issue=47&rft.spage=e2005241&rft.epage=n/a&rft.pages=e2005241-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202005241&rft_dat=%3Cproquest_cross%3E2453684209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463538845&rft_id=info:pmid/&rfr_iscdi=true |