Loading…

The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells

The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor an...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-11, Vol.32 (47), p.e2005241-n/a
Main Authors: Marina, Sara, Kaufmann, Noëmi Petrina, Karki, Akchheta, Gutiérrez‐Meza, Elizabeth, Gutiérrez‐Fernández, Edgar, Vollbrecht, Joachim, Solano, Eduardo, Walker, Barnaby, Bannock, James H., de Mello, John, Silva, Carlos, Nguyen, Thuc‐Quyen, Cangialosi, Daniele, Stingelin, Natalie, Martín, Jaime
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883
cites cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883
container_end_page n/a
container_issue 47
container_start_page e2005241
container_title Advanced materials (Weinheim)
container_volume 32
creator Marina, Sara
Kaufmann, Noëmi Petrina
Karki, Akchheta
Gutiérrez‐Meza, Elizabeth
Gutiérrez‐Fernández, Edgar
Vollbrecht, Joachim
Solano, Eduardo
Walker, Barnaby
Bannock, James H.
de Mello, John
Silva, Carlos
Nguyen, Thuc‐Quyen
Cangialosi, Daniele
Stingelin, Natalie
Martín, Jaime
description The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (
doi_str_mv 10.1002/adma.202005241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2453684209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453684209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwEvXlon2WSbPS71q1CpYj0v6W7Spuwma7KL9r83paLgxcMwMO_3hsdD6JLAmADQG1k1ckyBAnDKyBEaEE7JiEHGj9EAsoSPspSJU3QWwhYAshTSAdLLjcKzpnW-k7ZU2Gn80kvbGb0zdo27qE5dlIPpjLN7eX_KG-fbjesDntlO-cZ8qgo_b2RQ2Fi88GtpTYlfXS09nqq6DufoRMs6qIvvPURv93fL6eNovniYTfP5qEw4xLAcmOKrhAlFJqC1plWqM5KJhNGqjFPxkhDCCJFsJZSEEkBPKpIBTIgSIhmi68Pf1rv3XoWuaEwoYwJpVYxbUMaTVDAa6xiiqz_o1vXexnSRShOeCBHhIRofqNK7ELzSRetNI_2uIFDsay_2tRc_tUdDdjB8mFrt_qGL_PYp__V-AUyAhVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463538845</pqid></control><display><type>article</type><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</creator><creatorcontrib>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</creatorcontrib><description>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (&lt;200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions. The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202005241</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Composition ; fullerene derivatives ; Fullerenes ; Heat measurement ; Heterojunctions ; intermixing ; Materials science ; Morphology ; organic electronics ; organic solar cells ; Phase separation ; Photovoltaic cells ; Polymers ; Scanning ; semiconducting polymers ; Solar cells ; Thickness ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2005241-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</citedby><cites>FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</cites><orcidid>0000-0002-9669-7273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marina, Sara</creatorcontrib><creatorcontrib>Kaufmann, Noëmi Petrina</creatorcontrib><creatorcontrib>Karki, Akchheta</creatorcontrib><creatorcontrib>Gutiérrez‐Meza, Elizabeth</creatorcontrib><creatorcontrib>Gutiérrez‐Fernández, Edgar</creatorcontrib><creatorcontrib>Vollbrecht, Joachim</creatorcontrib><creatorcontrib>Solano, Eduardo</creatorcontrib><creatorcontrib>Walker, Barnaby</creatorcontrib><creatorcontrib>Bannock, James H.</creatorcontrib><creatorcontrib>de Mello, John</creatorcontrib><creatorcontrib>Silva, Carlos</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><creatorcontrib>Cangialosi, Daniele</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><creatorcontrib>Martín, Jaime</creatorcontrib><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><title>Advanced materials (Weinheim)</title><description>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (&lt;200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions. The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</description><subject>Charge transport</subject><subject>Composition</subject><subject>fullerene derivatives</subject><subject>Fullerenes</subject><subject>Heat measurement</subject><subject>Heterojunctions</subject><subject>intermixing</subject><subject>Materials science</subject><subject>Morphology</subject><subject>organic electronics</subject><subject>organic solar cells</subject><subject>Phase separation</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Scanning</subject><subject>semiconducting polymers</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKtXzwEvXlon2WSbPS71q1CpYj0v6W7Spuwma7KL9r83paLgxcMwMO_3hsdD6JLAmADQG1k1ckyBAnDKyBEaEE7JiEHGj9EAsoSPspSJU3QWwhYAshTSAdLLjcKzpnW-k7ZU2Gn80kvbGb0zdo27qE5dlIPpjLN7eX_KG-fbjesDntlO-cZ8qgo_b2RQ2Fi88GtpTYlfXS09nqq6DufoRMs6qIvvPURv93fL6eNovniYTfP5qEw4xLAcmOKrhAlFJqC1plWqM5KJhNGqjFPxkhDCCJFsJZSEEkBPKpIBTIgSIhmi68Pf1rv3XoWuaEwoYwJpVYxbUMaTVDAa6xiiqz_o1vXexnSRShOeCBHhIRofqNK7ELzSRetNI_2uIFDsay_2tRc_tUdDdjB8mFrt_qGL_PYp__V-AUyAhVs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Marina, Sara</creator><creator>Kaufmann, Noëmi Petrina</creator><creator>Karki, Akchheta</creator><creator>Gutiérrez‐Meza, Elizabeth</creator><creator>Gutiérrez‐Fernández, Edgar</creator><creator>Vollbrecht, Joachim</creator><creator>Solano, Eduardo</creator><creator>Walker, Barnaby</creator><creator>Bannock, James H.</creator><creator>de Mello, John</creator><creator>Silva, Carlos</creator><creator>Nguyen, Thuc‐Quyen</creator><creator>Cangialosi, Daniele</creator><creator>Stingelin, Natalie</creator><creator>Martín, Jaime</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9669-7273</orcidid></search><sort><creationdate>20201101</creationdate><title>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</title><author>Marina, Sara ; Kaufmann, Noëmi Petrina ; Karki, Akchheta ; Gutiérrez‐Meza, Elizabeth ; Gutiérrez‐Fernández, Edgar ; Vollbrecht, Joachim ; Solano, Eduardo ; Walker, Barnaby ; Bannock, James H. ; de Mello, John ; Silva, Carlos ; Nguyen, Thuc‐Quyen ; Cangialosi, Daniele ; Stingelin, Natalie ; Martín, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Composition</topic><topic>fullerene derivatives</topic><topic>Fullerenes</topic><topic>Heat measurement</topic><topic>Heterojunctions</topic><topic>intermixing</topic><topic>Materials science</topic><topic>Morphology</topic><topic>organic electronics</topic><topic>organic solar cells</topic><topic>Phase separation</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Scanning</topic><topic>semiconducting polymers</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marina, Sara</creatorcontrib><creatorcontrib>Kaufmann, Noëmi Petrina</creatorcontrib><creatorcontrib>Karki, Akchheta</creatorcontrib><creatorcontrib>Gutiérrez‐Meza, Elizabeth</creatorcontrib><creatorcontrib>Gutiérrez‐Fernández, Edgar</creatorcontrib><creatorcontrib>Vollbrecht, Joachim</creatorcontrib><creatorcontrib>Solano, Eduardo</creatorcontrib><creatorcontrib>Walker, Barnaby</creatorcontrib><creatorcontrib>Bannock, James H.</creatorcontrib><creatorcontrib>de Mello, John</creatorcontrib><creatorcontrib>Silva, Carlos</creatorcontrib><creatorcontrib>Nguyen, Thuc‐Quyen</creatorcontrib><creatorcontrib>Cangialosi, Daniele</creatorcontrib><creatorcontrib>Stingelin, Natalie</creatorcontrib><creatorcontrib>Martín, Jaime</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marina, Sara</au><au>Kaufmann, Noëmi Petrina</au><au>Karki, Akchheta</au><au>Gutiérrez‐Meza, Elizabeth</au><au>Gutiérrez‐Fernández, Edgar</au><au>Vollbrecht, Joachim</au><au>Solano, Eduardo</au><au>Walker, Barnaby</au><au>Bannock, James H.</au><au>de Mello, John</au><au>Silva, Carlos</au><au>Nguyen, Thuc‐Quyen</au><au>Cangialosi, Daniele</au><au>Stingelin, Natalie</au><au>Martín, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>47</issue><spage>e2005241</spage><epage>n/a</epage><pages>e2005241-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (&lt;200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions. The precise composition of the intermixed phase in bulk heterojunction structures with device‐relevant size is determined via the analysis of the glass transition temperatures proven by fast scanning calorimetry. A relatively small fraction (&lt;15 wt%) of an acceptor in the intermixed amorphous phase leads already to efficient charge generation. However, charge transport can only be sustained in blend morphologies with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202005241</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9669-7273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2005241-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2453684209
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Charge transport
Composition
fullerene derivatives
Fullerenes
Heat measurement
Heterojunctions
intermixing
Materials science
Morphology
organic electronics
organic solar cells
Phase separation
Photovoltaic cells
Polymers
Scanning
semiconducting polymers
Solar cells
Thickness
Thin films
title The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Importance%20of%20Quantifying%20the%20Composition%20of%20the%20Amorphous%20Intermixed%20Phase%20in%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Marina,%20Sara&rft.date=2020-11-01&rft.volume=32&rft.issue=47&rft.spage=e2005241&rft.epage=n/a&rft.pages=e2005241-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202005241&rft_dat=%3Cproquest_cross%3E2453684209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3501-4504e5b348e170fff2d6f9198342dc42dd5c111411a4b8ea0c00f7d190071e883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2463538845&rft_id=info:pmid/&rfr_iscdi=true