Loading…

Impact of Hydrometeorological Events for the Selection of Parametric Models for Protozoan Pathogens in Drinking‐Water Sources

Temporal variations in concentrations of pathogenic microorganisms in surface waters are well known to be influenced by hydrometeorological events. Reasonable methods for accounting for microbial peaks in the quantification of drinking water treatment requirements need to be addressed. Here, we appl...

Full description

Saved in:
Bibliographic Details
Published in:Risk analysis 2021-08, Vol.41 (8), p.1413-1426
Main Authors: Sylvestre, Émile, Burnet, Jean‐Baptiste, Dorner, Sarah, Smeets, Patrick, Medema, Gertjan, Villion, Manuela, Hachad, Mounia, Prévost, Michèle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Temporal variations in concentrations of pathogenic microorganisms in surface waters are well known to be influenced by hydrometeorological events. Reasonable methods for accounting for microbial peaks in the quantification of drinking water treatment requirements need to be addressed. Here, we applied a novel method for data collection and model validation to explicitly account for weather events (rainfall, snowmelt) when concentrations of pathogens are estimated in source water. Online in situ β‐d‐glucuronidase activity measurements were used to trigger sequential grab sampling of source water to quantify Cryptosporidium and Giardia concentrations during rainfall and snowmelt events at an urban and an agricultural drinking water treatment plant in Quebec, Canada. We then evaluate if mixed Poisson distributions fitted to monthly sampling data (n = 30 samples) could accurately predict daily mean concentrations during these events. We found that using the gamma distribution underestimated high Cryptosporidium and Giardia concentrations measured with routine or event‐based monitoring. However, the log‐normal distribution accurately predicted these high concentrations. The selection of a log‐normal distribution in preference to a gamma distribution increased the annual mean concentration by less than 0.1‐log but increased the upper bound of the 95% credibility interval on the annual mean by about 0.5‐log. Therefore, considering parametric uncertainty in an exposure assessment is essential to account for microbial peaks in risk assessment.
ISSN:0272-4332
1539-6924
DOI:10.1111/risa.13612