Loading…
Phosphorus recovery from sewage sludge - phosphorus leaching behavior from aluminum-containing tertiary and anaerobically digested sludge
Systematic investigations of the acidic dissolution of phosphorus (P), aluminum (Al), iron (Fe), and calcium (Ca) from Al-containing tertiary sludge were carried out in this work. The results were compared with the dissolution behavior of Al-containing anaerobically digested sludge to evaluate the P...
Saved in:
Published in: | Water science and technology 2020-10, Vol.82 (8), p.1509-1522 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systematic investigations of the acidic dissolution of phosphorus (P), aluminum (Al), iron (Fe), and calcium (Ca) from Al-containing tertiary sludge were carried out in this work. The results were compared with the dissolution behavior of Al-containing anaerobically digested sludge to evaluate the P recovery potential in the form of struvite from tertiary sludge versus anaerobically digested sludge. Additional investigations of synthetically produced Al sludge served as a comparison for the dissolution behavior of P and Al without the influence of other contaminants (metals, biomass). In addition, the acid consumption was analyzed as a function of the target pH during the dissolution. The dissolution efficiency of ortho-phosphate in tertiary and anaerobically digested sludge after acid treatment at pH 2 was ∼90%. The dissolution efficiency of Al and Ca in tertiary sludge was also ∼90% at pH 2, while the release efficiency of Al and Ca in anaerobically digested sludge was lower, ∼70% at pH 2. In tertiary sludge, about 75% of Fe was found dissolved at pH 2, whereas in anaerobically digested sludge this value was higher, ∼90%. Based on the experimental data, it can be concluded that significant dissolution of phosphorus from Al-containing tertiary sludge can take place at pH < 3. The highest sulfuric acid consumption for P dissolution was observed in the case of tertiary sludge at pH 2. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2020.414 |