Loading…
Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines
Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum pro...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (44), p.9252-9260 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733 |
---|---|
cites | cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733 |
container_end_page | 9260 |
container_issue | 44 |
container_start_page | 9252 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 124 |
creator | Follmer, Alec H Ribson, Ryan D Oyala, Paul H Chen, Grace Y Hadt, Ryan G |
description | Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation. |
doi_str_mv | 10.1021/acs.jpca.0c07860 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2455171147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455171147</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</originalsourceid><addsrcrecordid>eNp1UbtOwzAUjRBIPHdGjwyk2I6dpCMq5SEhgXit0Y1zQ1O5drAdRDf-gYnf40twW1am-zrnXB2dJDlmdMQoZ2eg_GjeKxhRRYsyp1vJHpOcppIzuR17Wo5TmWfj3WTf-zmllGVc7CXfz6ZB5wOYpjOvZGLfQaMJ5D0uB08e-878fH7duboL8Tj0eoMywXX1EDprPAmWPOGiRwdhcJheYI9RM2pMNargrFmrkAfU8AErConTZOhdp0h8S17AQLPU5H4WZqCtWoLpDPrDZKcF7fHorx4kz5fTp8l1ent3dTM5v01BcBZSLDMpZF1y2Ta0LvMcWsWLtqRFLnKAModCNjkVTBYgxkpgnWHGmppTBVwVWXaQnGx0e2ffBvShWnReodZg0A6-4kJKVjAmigilG6hy1nuHbRVNLMAtK0arVQpVTKFapVD9pRAppxvK-mIHZ6KX_-G_HlWQNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455171147</pqid></control><display><type>article</type><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</creator><creatorcontrib>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</creatorcontrib><description>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c07860</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (44), p.9252-9260</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</citedby><cites>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</cites><orcidid>0000-0002-6899-5943 ; 0000-0001-6026-1358 ; 0000-0002-8761-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Follmer, Alec H</creatorcontrib><creatorcontrib>Ribson, Ryan D</creatorcontrib><creatorcontrib>Oyala, Paul H</creatorcontrib><creatorcontrib>Chen, Grace Y</creatorcontrib><creatorcontrib>Hadt, Ryan G</creatorcontrib><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</description><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UbtOwzAUjRBIPHdGjwyk2I6dpCMq5SEhgXit0Y1zQ1O5drAdRDf-gYnf40twW1am-zrnXB2dJDlmdMQoZ2eg_GjeKxhRRYsyp1vJHpOcppIzuR17Wo5TmWfj3WTf-zmllGVc7CXfz6ZB5wOYpjOvZGLfQaMJ5D0uB08e-878fH7duboL8Tj0eoMywXX1EDprPAmWPOGiRwdhcJheYI9RM2pMNargrFmrkAfU8AErConTZOhdp0h8S17AQLPU5H4WZqCtWoLpDPrDZKcF7fHorx4kz5fTp8l1ent3dTM5v01BcBZSLDMpZF1y2Ta0LvMcWsWLtqRFLnKAModCNjkVTBYgxkpgnWHGmppTBVwVWXaQnGx0e2ffBvShWnReodZg0A6-4kJKVjAmigilG6hy1nuHbRVNLMAtK0arVQpVTKFapVD9pRAppxvK-mIHZ6KX_-G_HlWQNQ</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Follmer, Alec H</creator><creator>Ribson, Ryan D</creator><creator>Oyala, Paul H</creator><creator>Chen, Grace Y</creator><creator>Hadt, Ryan G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6899-5943</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid></search><sort><creationdate>20201105</creationdate><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><author>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Follmer, Alec H</creatorcontrib><creatorcontrib>Ribson, Ryan D</creatorcontrib><creatorcontrib>Oyala, Paul H</creatorcontrib><creatorcontrib>Chen, Grace Y</creatorcontrib><creatorcontrib>Hadt, Ryan G</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Follmer, Alec H</au><au>Ribson, Ryan D</au><au>Oyala, Paul H</au><au>Chen, Grace Y</au><au>Hadt, Ryan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>124</volume><issue>44</issue><spage>9252</spage><epage>9260</epage><pages>9252-9260</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu(II) versus V(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c07860</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6899-5943</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (44), p.9252-9260 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_2455171147 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | A: Spectroscopy, Molecular Structure, and Quantum Chemistry |
title | Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Covalent%20versus%20Spin%E2%80%93Orbit%20Coupling%20Contributions%20to%20Temperature-Dependent%20Electron%20Spin%20Relaxation%20in%20Cupric%20and%20Vanadyl%20Phthalocyanines&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Follmer,%20Alec%20H&rft.date=2020-11-05&rft.volume=124&rft.issue=44&rft.spage=9252&rft.epage=9260&rft.pages=9252-9260&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c07860&rft_dat=%3Cproquest_cross%3E2455171147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455171147&rft_id=info:pmid/&rfr_iscdi=true |