Loading…

Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines

Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum pro...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (44), p.9252-9260
Main Authors: Follmer, Alec H, Ribson, Ryan D, Oyala, Paul H, Chen, Grace Y, Hadt, Ryan G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733
cites cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733
container_end_page 9260
container_issue 44
container_start_page 9252
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 124
creator Follmer, Alec H
Ribson, Ryan D
Oyala, Paul H
Chen, Grace Y
Hadt, Ryan G
description Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper­(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu­(II) versus V­(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.
doi_str_mv 10.1021/acs.jpca.0c07860
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2455171147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455171147</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</originalsourceid><addsrcrecordid>eNp1UbtOwzAUjRBIPHdGjwyk2I6dpCMq5SEhgXit0Y1zQ1O5drAdRDf-gYnf40twW1am-zrnXB2dJDlmdMQoZ2eg_GjeKxhRRYsyp1vJHpOcppIzuR17Wo5TmWfj3WTf-zmllGVc7CXfz6ZB5wOYpjOvZGLfQaMJ5D0uB08e-878fH7duboL8Tj0eoMywXX1EDprPAmWPOGiRwdhcJheYI9RM2pMNargrFmrkAfU8AErConTZOhdp0h8S17AQLPU5H4WZqCtWoLpDPrDZKcF7fHorx4kz5fTp8l1ent3dTM5v01BcBZSLDMpZF1y2Ta0LvMcWsWLtqRFLnKAModCNjkVTBYgxkpgnWHGmppTBVwVWXaQnGx0e2ffBvShWnReodZg0A6-4kJKVjAmigilG6hy1nuHbRVNLMAtK0arVQpVTKFapVD9pRAppxvK-mIHZ6KX_-G_HlWQNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455171147</pqid></control><display><type>article</type><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</creator><creatorcontrib>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</creatorcontrib><description>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper­(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu­(II) versus V­(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.0c07860</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2020-11, Vol.124 (44), p.9252-9260</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</citedby><cites>FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</cites><orcidid>0000-0002-6899-5943 ; 0000-0001-6026-1358 ; 0000-0002-8761-4667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Follmer, Alec H</creatorcontrib><creatorcontrib>Ribson, Ryan D</creatorcontrib><creatorcontrib>Oyala, Paul H</creatorcontrib><creatorcontrib>Chen, Grace Y</creatorcontrib><creatorcontrib>Hadt, Ryan G</creatorcontrib><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper­(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu­(II) versus V­(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</description><subject>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UbtOwzAUjRBIPHdGjwyk2I6dpCMq5SEhgXit0Y1zQ1O5drAdRDf-gYnf40twW1am-zrnXB2dJDlmdMQoZ2eg_GjeKxhRRYsyp1vJHpOcppIzuR17Wo5TmWfj3WTf-zmllGVc7CXfz6ZB5wOYpjOvZGLfQaMJ5D0uB08e-878fH7duboL8Tj0eoMywXX1EDprPAmWPOGiRwdhcJheYI9RM2pMNargrFmrkAfU8AErConTZOhdp0h8S17AQLPU5H4WZqCtWoLpDPrDZKcF7fHorx4kz5fTp8l1ent3dTM5v01BcBZSLDMpZF1y2Ta0LvMcWsWLtqRFLnKAModCNjkVTBYgxkpgnWHGmppTBVwVWXaQnGx0e2ffBvShWnReodZg0A6-4kJKVjAmigilG6hy1nuHbRVNLMAtK0arVQpVTKFapVD9pRAppxvK-mIHZ6KX_-G_HlWQNQ</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Follmer, Alec H</creator><creator>Ribson, Ryan D</creator><creator>Oyala, Paul H</creator><creator>Chen, Grace Y</creator><creator>Hadt, Ryan G</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6899-5943</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid></search><sort><creationdate>20201105</creationdate><title>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</title><author>Follmer, Alec H ; Ribson, Ryan D ; Oyala, Paul H ; Chen, Grace Y ; Hadt, Ryan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A: Spectroscopy, Molecular Structure, and Quantum Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Follmer, Alec H</creatorcontrib><creatorcontrib>Ribson, Ryan D</creatorcontrib><creatorcontrib>Oyala, Paul H</creatorcontrib><creatorcontrib>Chen, Grace Y</creatorcontrib><creatorcontrib>Hadt, Ryan G</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Follmer, Alec H</au><au>Ribson, Ryan D</au><au>Oyala, Paul H</au><au>Chen, Grace Y</au><au>Hadt, Ryan G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>124</volume><issue>44</issue><spage>9252</spage><epage>9260</epage><pages>9252-9260</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Recent interest in transition-metal complexes as potential quantum bits (qubits) has reinvigorated the investigation of fundamental contributions to electron spin relaxation in various ligand scaffolds. From quantum computers to chemical and biological sensors, interest in leveraging the quantum properties of these molecules has opened a discussion of the requirements to maintain coherence over a large temperature range, including near room temperature. Here we compare temperature-, magnetic field position-, and concentration-dependent electron spin relaxation in copper­(II) phthalocyanine (CuPc) and vanadyl phthalocyanine (VOPc) doped into diamagnetic hosts. While VOPc demonstrates coherence up to room temperature, CuPc coherence times become rapidly T 1-limited with increasing temperature, despite featuring a more covalent ground-state wave function than VOPc. As rationalized by a ligand field model, this difference is ascribed to different spin–orbit coupling (SOC) constants for Cu­(II) versus V­(IV). The manifestation of SOC contributions to spin–phonon coupling and electron spin relaxation in different ligand fields is discussed, allowing for a further understanding of the competing roles of SOC and covalency in electron spin relaxation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.0c07860</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6899-5943</orcidid><orcidid>https://orcid.org/0000-0001-6026-1358</orcidid><orcidid>https://orcid.org/0000-0002-8761-4667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2020-11, Vol.124 (44), p.9252-9260
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2455171147
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects A: Spectroscopy, Molecular Structure, and Quantum Chemistry
title Understanding Covalent versus Spin–Orbit Coupling Contributions to Temperature-Dependent Electron Spin Relaxation in Cupric and Vanadyl Phthalocyanines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Covalent%20versus%20Spin%E2%80%93Orbit%20Coupling%20Contributions%20to%20Temperature-Dependent%20Electron%20Spin%20Relaxation%20in%20Cupric%20and%20Vanadyl%20Phthalocyanines&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Follmer,%20Alec%20H&rft.date=2020-11-05&rft.volume=124&rft.issue=44&rft.spage=9252&rft.epage=9260&rft.pages=9252-9260&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.0c07860&rft_dat=%3Cproquest_cross%3E2455171147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a421t-e83545b825fd0b866afc27f807646aa86a75d604157a49c4eb3e31db20ca2c733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455171147&rft_id=info:pmid/&rfr_iscdi=true