Loading…

Optical performance monitoring using digital coherent receivers and convolutional neural networks

We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2020-10, Vol.28 (21), p.32087-32104
Main Authors: Cho, Hyung Joon, Varughese, Siddharth, Lippiatt, Daniel, Desalvo, Richard, Tibuleac, Sorin, Ralph, Stephen E.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the benefits and challenges of extracting information at two distinct points within the demodulation process: immediately after timing recovery and immediately prior to symbol unmapping. For the former, we use 3D Stokes-space based signal representations. For the latter, we use conventional I-Q constellation images created using demodulated symbols. We demonstrate these methods on simulated and experimental dual-polarized waveforms for 32-GBaud QPSK, 8QAM, 16QAM, and 32QAM. Our results show that CNN extracts distinct and learnable features at both the early stage of demodulation where the information can be used to optimize subsequent stages and near the end of demodulation where the constellation images are readily available. Modulation format identification is demonstrated with >99.8% accuracy, OSNR estimation with
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.406294