Loading…
Optical performance monitoring using digital coherent receivers and convolutional neural networks
We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the...
Saved in:
Published in: | Optics express 2020-10, Vol.28 (21), p.32087-32104 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We experimentally demonstrate accurate modulation format identification, optical signal to noise ratio (OSNR) estimation, and bit error ratio (BER) estimation of optical signals for wavelength division multiplexed optical communication systems using convolutional neural networks (CNN). We assess the benefits and challenges of extracting information at two distinct points within the demodulation process: immediately after timing recovery and immediately prior to symbol unmapping. For the former, we use 3D Stokes-space based signal representations. For the latter, we use conventional I-Q constellation images created using demodulated symbols. We demonstrate these methods on simulated and experimental dual-polarized waveforms for 32-GBaud QPSK, 8QAM, 16QAM, and 32QAM. Our results show that CNN extracts distinct and learnable features at both the early stage of demodulation where the information can be used to optimize subsequent stages and near the end of demodulation where the constellation images are readily available. Modulation format identification is demonstrated with >99.8% accuracy, OSNR estimation with |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.406294 |