Loading…
Digitally tailoring arbitrary structured light of generalized ray-wave duality
Structured lights, particularly those with tunable and controllable geometries, are highly topical due to a myriad of their applications from imaging to communications. Ray-wave duality (RWD) is an exotic physical effect in structured light that the behavior of light can be described by both the geo...
Saved in:
Published in: | Optics express 2020-10, Vol.28 (21), p.31043-31056 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structured lights, particularly those with tunable and controllable geometries, are highly topical due to a myriad of their applications from imaging to communications. Ray-wave duality (RWD) is an exotic physical effect in structured light that the behavior of light can be described by both the geometric ray-like trajectory and a coherent wave-packet, thus providing versatile degrees of freedom (DoFs) to tailor more general structures. However, the generation of RWD geometric modes requires a solid-state laser cavity with strict mechanical control to fulfill the ray oscillation condition, which limits the flexiblility of applications. Here we overcome this confinement to generate on-demand RWD geometric modes by digital holographic method in free space without a cavity. We put forward a theory of generalized ray-wave duality, describing all previous geometric modes as well as new classes of RWD geometric modes that cannot be generated from laser cavities, which are verified by our free-of-cavity creation method. Our work not only breaks the conventional cavity limit on RWD but also enriches the family of geometric modes. More importantly, it offers a new way of digitally tailoring RWD geometric modes on-demand, replacing the prior mechanical control, and opening up new possibilities for applications of ray-wave structured light. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.400587 |