Loading…
On the Ecology and Distribution of Steelhead (Oncorhynchus mykiss) in California’s Eel River
Abstract The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturatio...
Saved in:
Published in: | The Journal of heredity 2020-12, Vol.111 (6), p.548-563 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of 1 million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life-history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation-related issues. For example, we found that distinct segregation between winter and summer-run steelhead correlated with flow-dependent barriers in major forks of the Eel, that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life history and overall genetic diversity have been maintained in the resident trout population above; and we found no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond. |
---|---|
ISSN: | 0022-1503 1465-7333 |
DOI: | 10.1093/jhered/esaa043 |