Loading…

Extracellular Matrix in Neural Plasticity and Regeneration

The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as...

Full description

Saved in:
Bibliographic Details
Published in:Cellular and molecular neurobiology 2022-04, Vol.42 (3), p.647-664
Main Authors: Chelyshev, Yurii A., Kabdesh, Ilyas M., Mukhamedshina, Yana O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c392t-f45d765f90372a6e183aeb443f8188b2366872c2e0e494f4536ab7c0d33e40003
container_end_page 664
container_issue 3
container_start_page 647
container_title Cellular and molecular neurobiology
container_volume 42
creator Chelyshev, Yurii A.
Kabdesh, Ilyas M.
Mukhamedshina, Yana O.
description The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.
doi_str_mv 10.1007/s10571-020-00986-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456417908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456417908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f45d765f90372a6e183aeb443f8188b2366872c2e0e494f4536ab7c0d33e40003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAmOPYzvsUFUeUnkIwdpyUqdKlSbFTqT273FJAYkFq1nMmTtXh5BTCpcUQF55ComkMTCIAVIlYtgjQ5pIjIVC2CdDYJLFHDkMyJH3CwgUQHJIBoiUKaHSIbmerFtncltVXWVc9GhaV66jso6ebOdMFb1UxrdlXrabyNSz6NXObW2dacumPiYHham8PdnNEXm_nbyN7-Pp893D-GYa55iyNi54MpMiKVJAyYywVKGxGedYKKpUxlAIJVnOLFie8kCjMJnMYYZoeaiMI3LR565c89FZ3-pl6beNTW2bzmvGE8GpTEEF9PwPumg6V4d2mglMWMIRRaBYT-Wu8d7ZQq9cuTRuoynorVndm9XBrP4yq7ctznbRXba0s5-Tb5UBwB7wYVXPrfv9_U_sJ2KdgSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635254336</pqid></control><display><type>article</type><title>Extracellular Matrix in Neural Plasticity and Regeneration</title><source>Springer Nature</source><creator>Chelyshev, Yurii A. ; Kabdesh, Ilyas M. ; Mukhamedshina, Yana O.</creator><creatorcontrib>Chelyshev, Yurii A. ; Kabdesh, Ilyas M. ; Mukhamedshina, Yana O.</creatorcontrib><description>The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.</description><identifier>ISSN: 0272-4340</identifier><identifier>EISSN: 1573-6830</identifier><identifier>DOI: 10.1007/s10571-020-00986-0</identifier><identifier>PMID: 33128689</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Axons ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell membranes ; Cell survival ; Central nervous system ; Chondroitin sulfate ; Dendritic branching ; Extracellular matrix ; Extracellular Matrix - metabolism ; Molecular modelling ; Nerve Regeneration ; Neural networks ; Neurobiology ; Neuronal Plasticity - physiology ; Neuronal-glial interactions ; Neurons - metabolism ; Neuroplasticity ; Neurosciences ; Perineuronal nets ; Proteoglycans ; Regeneration ; Review Paper ; Synaptogenesis</subject><ispartof>Cellular and molecular neurobiology, 2022-04, Vol.42 (3), p.647-664</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020. Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-f45d765f90372a6e183aeb443f8188b2366872c2e0e494f4536ab7c0d33e40003</cites><orcidid>0000-0002-9435-340X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33128689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chelyshev, Yurii A.</creatorcontrib><creatorcontrib>Kabdesh, Ilyas M.</creatorcontrib><creatorcontrib>Mukhamedshina, Yana O.</creatorcontrib><title>Extracellular Matrix in Neural Plasticity and Regeneration</title><title>Cellular and molecular neurobiology</title><addtitle>Cell Mol Neurobiol</addtitle><addtitle>Cell Mol Neurobiol</addtitle><description>The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.</description><subject>Axons</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell membranes</subject><subject>Cell survival</subject><subject>Central nervous system</subject><subject>Chondroitin sulfate</subject><subject>Dendritic branching</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Molecular modelling</subject><subject>Nerve Regeneration</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuronal-glial interactions</subject><subject>Neurons - metabolism</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Perineuronal nets</subject><subject>Proteoglycans</subject><subject>Regeneration</subject><subject>Review Paper</subject><subject>Synaptogenesis</subject><issn>0272-4340</issn><issn>1573-6830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsAmOPYzvsUFUeUnkIwdpyUqdKlSbFTqT273FJAYkFq1nMmTtXh5BTCpcUQF55ComkMTCIAVIlYtgjQ5pIjIVC2CdDYJLFHDkMyJH3CwgUQHJIBoiUKaHSIbmerFtncltVXWVc9GhaV66jso6ebOdMFb1UxrdlXrabyNSz6NXObW2dacumPiYHham8PdnNEXm_nbyN7-Pp893D-GYa55iyNi54MpMiKVJAyYywVKGxGedYKKpUxlAIJVnOLFie8kCjMJnMYYZoeaiMI3LR565c89FZ3-pl6beNTW2bzmvGE8GpTEEF9PwPumg6V4d2mglMWMIRRaBYT-Wu8d7ZQq9cuTRuoynorVndm9XBrP4yq7ctznbRXba0s5-Tb5UBwB7wYVXPrfv9_U_sJ2KdgSE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chelyshev, Yurii A.</creator><creator>Kabdesh, Ilyas M.</creator><creator>Mukhamedshina, Yana O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9435-340X</orcidid></search><sort><creationdate>20220401</creationdate><title>Extracellular Matrix in Neural Plasticity and Regeneration</title><author>Chelyshev, Yurii A. ; Kabdesh, Ilyas M. ; Mukhamedshina, Yana O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f45d765f90372a6e183aeb443f8188b2366872c2e0e494f4536ab7c0d33e40003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axons</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell membranes</topic><topic>Cell survival</topic><topic>Central nervous system</topic><topic>Chondroitin sulfate</topic><topic>Dendritic branching</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Molecular modelling</topic><topic>Nerve Regeneration</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuronal-glial interactions</topic><topic>Neurons - metabolism</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Perineuronal nets</topic><topic>Proteoglycans</topic><topic>Regeneration</topic><topic>Review Paper</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chelyshev, Yurii A.</creatorcontrib><creatorcontrib>Kabdesh, Ilyas M.</creatorcontrib><creatorcontrib>Mukhamedshina, Yana O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular and molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chelyshev, Yurii A.</au><au>Kabdesh, Ilyas M.</au><au>Mukhamedshina, Yana O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular Matrix in Neural Plasticity and Regeneration</atitle><jtitle>Cellular and molecular neurobiology</jtitle><stitle>Cell Mol Neurobiol</stitle><addtitle>Cell Mol Neurobiol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>42</volume><issue>3</issue><spage>647</spage><epage>664</epage><pages>647-664</pages><issn>0272-4340</issn><eissn>1573-6830</eissn><abstract>The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules. The neural ECM acts as a non-specific physical barrier that modulates neuronal plasticity and axon regeneration. There are two specialized types of ECM in the CNS, diffuse perisynaptic ECM and condensed ECM, which selectively surround the perikaryon and initial part of dendritic trees in subtypes of neurons, forming perineuronal nets. This review presents the current knowledge about the role of important neuronal ECM molecules in maintaining the basic functions of a neuron, including electrogenesis and the ability to form neural circuits. The review mainly focuses on the role of ECM components that participate in the control of key events such as cell survival, axonal growth, and synaptic remodeling. Particular attention is drawn to the numerous molecular partners of the main ECM components. These regulatory molecules are integrated into the cell membrane or disposed into the matrix itself in solid or soluble form. The interaction of the main matrix components with molecular partners seems essential in molecular mechanisms controlling neuronal functions. Special attention is paid to the chondroitin sulfate proteoglycan 4, type 1 transmembrane protein, neural-glial antigen 2 (NG2/CSPG4), whose cleaved extracellular domain is such a molecular partner that it not only acts directly on neural and vascular cells, but also exerts its influence indirectly by binding to resident ECM molecules.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33128689</pmid><doi>10.1007/s10571-020-00986-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9435-340X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-4340
ispartof Cellular and molecular neurobiology, 2022-04, Vol.42 (3), p.647-664
issn 0272-4340
1573-6830
language eng
recordid cdi_proquest_miscellaneous_2456417908
source Springer Nature
subjects Axons
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell membranes
Cell survival
Central nervous system
Chondroitin sulfate
Dendritic branching
Extracellular matrix
Extracellular Matrix - metabolism
Molecular modelling
Nerve Regeneration
Neural networks
Neurobiology
Neuronal Plasticity - physiology
Neuronal-glial interactions
Neurons - metabolism
Neuroplasticity
Neurosciences
Perineuronal nets
Proteoglycans
Regeneration
Review Paper
Synaptogenesis
title Extracellular Matrix in Neural Plasticity and Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20Matrix%20in%20Neural%20Plasticity%20and%20Regeneration&rft.jtitle=Cellular%20and%20molecular%20neurobiology&rft.au=Chelyshev,%20Yurii%20A.&rft.date=2022-04-01&rft.volume=42&rft.issue=3&rft.spage=647&rft.epage=664&rft.pages=647-664&rft.issn=0272-4340&rft.eissn=1573-6830&rft_id=info:doi/10.1007/s10571-020-00986-0&rft_dat=%3Cproquest_cross%3E2456417908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f45d765f90372a6e183aeb443f8188b2366872c2e0e494f4536ab7c0d33e40003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635254336&rft_id=info:pmid/33128689&rfr_iscdi=true