Loading…
Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries
Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hiera...
Saved in:
Published in: | Chemistry : a European journal 2021-02, Vol.27 (11), p.3745-3752 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3752 |
container_issue | 11 |
container_start_page | 3745 |
container_title | Chemistry : a European journal |
container_volume | 27 |
creator | Xin, Wen Chen, Nan Wei, Zhixuan Wang, Chunzhong Chen, Gang Du, Fei |
description | Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.
Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries. |
doi_str_mv | 10.1002/chem.202004069 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456856010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456856010</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733</originalsourceid><addsrcrecordid>eNpdkcFOwkAQhjdGExG9et7Ei5fidLftskckICQQjeC5WdpZWNJ2cbeEcPMRvPl-PolFDAdPk5n_-2cm-Qm5DaETArCHbIVlhwEDiCCRZ6QVxiwMuEjic9ICGYkgibm8JFferwFAJpy3yNcMC_398dnzHstFgTkd4gwZnZrMWb9ZoUNPd6Ze0ZFZrhrwVdVI-2qjFqYw9Z6qKqcTWy0baY6upLP6pHjaq2yOdNpYnFEF1dbRmc3NtmzoX-eLrZX3x8HYVvRR1QcW_TW50KrwePNX2-RtOJj3R8Hk-Wnc702CJQcuA6FjwRiCCLXSkdRcYp6DXOiMZUKorgSZ8URKpoVEoSORRVm06AohujlngvM2uT_u3Tj7vkVfp6XxGRaFqtBufcqiOOnGCYTQoHf_0LXduqr5rqGaQyyJ4UDJI7UzBe7TjTOlcvs0hPQQUnoIKT2FlPZHg-mp4z8H1Y15</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490926500</pqid></control><display><type>article</type><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><source>Wiley</source><creator>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creator><creatorcontrib>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creatorcontrib><description>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.
Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202004069</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anode materials ; Anodes ; Batteries ; Carbonaceous materials ; Chemistry ; Diffusion rate ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; high-rate capability ; Lithium ; Lithium-ion batteries ; Microspheres ; Morphology ; Potassium ; Rechargeable batteries ; Sodium ; Storage capacity ; transition metal selenides</subject><ispartof>Chemistry : a European journal, 2021-02, Vol.27 (11), p.3745-3752</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6413-0689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xin, Wen</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><title>Chemistry : a European journal</title><description>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.
Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</description><subject>anode materials</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbonaceous materials</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>high-rate capability</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microspheres</subject><subject>Morphology</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Storage capacity</subject><subject>transition metal selenides</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkcFOwkAQhjdGExG9et7Ei5fidLftskckICQQjeC5WdpZWNJ2cbeEcPMRvPl-PolFDAdPk5n_-2cm-Qm5DaETArCHbIVlhwEDiCCRZ6QVxiwMuEjic9ICGYkgibm8JFferwFAJpy3yNcMC_398dnzHstFgTkd4gwZnZrMWb9ZoUNPd6Ze0ZFZrhrwVdVI-2qjFqYw9Z6qKqcTWy0baY6upLP6pHjaq2yOdNpYnFEF1dbRmc3NtmzoX-eLrZX3x8HYVvRR1QcW_TW50KrwePNX2-RtOJj3R8Hk-Wnc702CJQcuA6FjwRiCCLXSkdRcYp6DXOiMZUKorgSZ8URKpoVEoSORRVm06AohujlngvM2uT_u3Tj7vkVfp6XxGRaFqtBufcqiOOnGCYTQoHf_0LXduqr5rqGaQyyJ4UDJI7UzBe7TjTOlcvs0hPQQUnoIKT2FlPZHg-mp4z8H1Y15</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Xin, Wen</creator><creator>Chen, Nan</creator><creator>Wei, Zhixuan</creator><creator>Wang, Chunzhong</creator><creator>Chen, Gang</creator><creator>Du, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></search><sort><creationdate>20210219</creationdate><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><author>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anode materials</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbonaceous materials</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>high-rate capability</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microspheres</topic><topic>Morphology</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Storage capacity</topic><topic>transition metal selenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Wen</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Wen</au><au>Chen, Nan</au><au>Wei, Zhixuan</au><au>Wang, Chunzhong</au><au>Chen, Gang</au><au>Du, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-02-19</date><risdate>2021</risdate><volume>27</volume><issue>11</issue><spage>3745</spage><epage>3752</epage><pages>3745-3752</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage.
Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202004069</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2021-02, Vol.27 (11), p.3745-3752 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2456856010 |
source | Wiley |
subjects | anode materials Anodes Batteries Carbonaceous materials Chemistry Diffusion rate Electrochemical analysis Electrochemistry Electrode materials high-rate capability Lithium Lithium-ion batteries Microspheres Morphology Potassium Rechargeable batteries Sodium Storage capacity transition metal selenides |
title | Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20FeSe2%20Microspheres%20with%20High%E2%80%90Rate%20Capability%20and%20Long%E2%80%90Term%20Stability%20as%20Anode%20Material%20for%20Sodium%E2%80%90%20and%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Xin,%20Wen&rft.date=2021-02-19&rft.volume=27&rft.issue=11&rft.spage=3745&rft.epage=3752&rft.pages=3745-3752&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202004069&rft_dat=%3Cproquest_wiley%3E2456856010%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490926500&rft_id=info:pmid/&rfr_iscdi=true |