Loading…

Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries

Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hiera...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2021-02, Vol.27 (11), p.3745-3752
Main Authors: Xin, Wen, Chen, Nan, Wei, Zhixuan, Wang, Chunzhong, Chen, Gang, Du, Fei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3752
container_issue 11
container_start_page 3745
container_title Chemistry : a European journal
container_volume 27
creator Xin, Wen
Chen, Nan
Wei, Zhixuan
Wang, Chunzhong
Chen, Gang
Du, Fei
description Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage. Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.
doi_str_mv 10.1002/chem.202004069
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456856010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456856010</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733</originalsourceid><addsrcrecordid>eNpdkcFOwkAQhjdGExG9et7Ei5fidLftskckICQQjeC5WdpZWNJ2cbeEcPMRvPl-PolFDAdPk5n_-2cm-Qm5DaETArCHbIVlhwEDiCCRZ6QVxiwMuEjic9ICGYkgibm8JFferwFAJpy3yNcMC_398dnzHstFgTkd4gwZnZrMWb9ZoUNPd6Ze0ZFZrhrwVdVI-2qjFqYw9Z6qKqcTWy0baY6upLP6pHjaq2yOdNpYnFEF1dbRmc3NtmzoX-eLrZX3x8HYVvRR1QcW_TW50KrwePNX2-RtOJj3R8Hk-Wnc702CJQcuA6FjwRiCCLXSkdRcYp6DXOiMZUKorgSZ8URKpoVEoSORRVm06AohujlngvM2uT_u3Tj7vkVfp6XxGRaFqtBufcqiOOnGCYTQoHf_0LXduqr5rqGaQyyJ4UDJI7UzBe7TjTOlcvs0hPQQUnoIKT2FlPZHg-mp4z8H1Y15</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490926500</pqid></control><display><type>article</type><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><source>Wiley</source><creator>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creator><creatorcontrib>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</creatorcontrib><description>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage. Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202004069</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anode materials ; Anodes ; Batteries ; Carbonaceous materials ; Chemistry ; Diffusion rate ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; high-rate capability ; Lithium ; Lithium-ion batteries ; Microspheres ; Morphology ; Potassium ; Rechargeable batteries ; Sodium ; Storage capacity ; transition metal selenides</subject><ispartof>Chemistry : a European journal, 2021-02, Vol.27 (11), p.3745-3752</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6413-0689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xin, Wen</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><title>Chemistry : a European journal</title><description>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage. Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</description><subject>anode materials</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Carbonaceous materials</subject><subject>Chemistry</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>high-rate capability</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microspheres</subject><subject>Morphology</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Storage capacity</subject><subject>transition metal selenides</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkcFOwkAQhjdGExG9et7Ei5fidLftskckICQQjeC5WdpZWNJ2cbeEcPMRvPl-PolFDAdPk5n_-2cm-Qm5DaETArCHbIVlhwEDiCCRZ6QVxiwMuEjic9ICGYkgibm8JFferwFAJpy3yNcMC_398dnzHstFgTkd4gwZnZrMWb9ZoUNPd6Ze0ZFZrhrwVdVI-2qjFqYw9Z6qKqcTWy0baY6upLP6pHjaq2yOdNpYnFEF1dbRmc3NtmzoX-eLrZX3x8HYVvRR1QcW_TW50KrwePNX2-RtOJj3R8Hk-Wnc702CJQcuA6FjwRiCCLXSkdRcYp6DXOiMZUKorgSZ8URKpoVEoSORRVm06AohujlngvM2uT_u3Tj7vkVfp6XxGRaFqtBufcqiOOnGCYTQoHf_0LXduqr5rqGaQyyJ4UDJI7UzBe7TjTOlcvs0hPQQUnoIKT2FlPZHg-mp4z8H1Y15</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Xin, Wen</creator><creator>Chen, Nan</creator><creator>Wei, Zhixuan</creator><creator>Wang, Chunzhong</creator><creator>Chen, Gang</creator><creator>Du, Fei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></search><sort><creationdate>20210219</creationdate><title>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</title><author>Xin, Wen ; Chen, Nan ; Wei, Zhixuan ; Wang, Chunzhong ; Chen, Gang ; Du, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anode materials</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Carbonaceous materials</topic><topic>Chemistry</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>high-rate capability</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microspheres</topic><topic>Morphology</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Storage capacity</topic><topic>transition metal selenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Wen</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Wei, Zhixuan</creatorcontrib><creatorcontrib>Wang, Chunzhong</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Du, Fei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Wen</au><au>Chen, Nan</au><au>Wei, Zhixuan</au><au>Wang, Chunzhong</au><au>Chen, Gang</au><au>Du, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-02-19</date><risdate>2021</risdate><volume>27</volume><issue>11</issue><spage>3745</spage><epage>3752</epage><pages>3745-3752</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Sodium‐ and potassium‐ion batteries have attracted intensive attention recently as low‐cost alternatives to lithium‐ion batteries with naturally abundant resources. However, the large ionic radii of Na+ and K+ render their slow mobility, leading to sluggish diffusion in host materials. Herein, hierarchical FeSe2 microspheres assembled by closely packed nano/microrods are rationally designed and synthesized through a facile solvothermal method. Without carbonaceous material incorporation, the electrode delivers a reversible Na+ storage capacity of 559 mA h g−1 at a current rate of 0.1 A g−1 and a remarkable rate performance with a capacity of 525 mA h g−1 at 20 A g−1. As for K+ storage, the FeSe2 anode delivers a high reversible capacity of 393 mA h g−1 at 0.4 A g−1. Even at a high current rate of 5 A g−1, a discharge capacity of 322 mA h g−1 can be achieved, which is among the best high‐rate anodes for K+ storage. The excellent electrochemical performance can be attributed to the favorable morphological structure and the use of an ether‐based electrolyte during cycling. Moreover, quantitative study suggests a strong pseudocapacitive contribution, which boosts fast kinetics and interfacial storage. Microsphere anode materials: Self‐assembled FeSe2 microspheres are synthesized through a facile solvothermal method. The FeSe2 microspheres exhibit superior rate performance and long cycle stability in both sodium‐ and potassium‐ion batteries.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202004069</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6413-0689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-02, Vol.27 (11), p.3745-3752
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2456856010
source Wiley
subjects anode materials
Anodes
Batteries
Carbonaceous materials
Chemistry
Diffusion rate
Electrochemical analysis
Electrochemistry
Electrode materials
high-rate capability
Lithium
Lithium-ion batteries
Microspheres
Morphology
Potassium
Rechargeable batteries
Sodium
Storage capacity
transition metal selenides
title Self‐Assembled FeSe2 Microspheres with High‐Rate Capability and Long‐Term Stability as Anode Material for Sodium‐ and Potassium‐Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled%20FeSe2%20Microspheres%20with%20High%E2%80%90Rate%20Capability%20and%20Long%E2%80%90Term%20Stability%20as%20Anode%20Material%20for%20Sodium%E2%80%90%20and%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Xin,%20Wen&rft.date=2021-02-19&rft.volume=27&rft.issue=11&rft.spage=3745&rft.epage=3752&rft.pages=3745-3752&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202004069&rft_dat=%3Cproquest_wiley%3E2456856010%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3039-7f5722e071faf49f39edd09bfc2c77a8909c36992f79e7f47c4c4b87778d32733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2490926500&rft_id=info:pmid/&rfr_iscdi=true