Loading…
Trapping Failure Leads to Discovery of Potent Semiochemical Repellent for the Walnut Twig Beetle
The walnut twig beetle, Pityophthorus juglandis Blackman, and its associated fungal pathogen that causes thousand cankers disease, currently threaten the viability of walnut trees across much of North America. During a 2011 assessment of seasonal flight patterns of P. juglandis with yellow sticky tr...
Saved in:
Published in: | Journal of economic entomology 2020-12, Vol.113 (6), p.2772-2784 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The walnut twig beetle, Pityophthorus juglandis Blackman, and its associated fungal pathogen that causes thousand cankers disease, currently threaten the viability of walnut trees across much of North America. During a 2011 assessment of seasonal flight patterns of P. juglandis with yellow sticky traps baited with the male-produced aggregation pheromone component, 3-methyl-2-buten-1-ol, dramatically reduced catches were recorded when Tree Tanglefoot adhesive was used to coat the traps. In summer 2011, two trap adhesives were tested for potential repellency against P. juglandis in a field trapping bioassay. SuperQ extracts of volatiles from the most repellent adhesive were analyzed by gas chromatography–mass spectrometry, and limonene and α-pinene were identified as predominant components. In field-based, trapping experiments both enantiomers of limonene at a release rate of ∼700 mg/d conferred 91–99% reduction in trap catches of P. juglandis to pheromone-baited traps. (+)- and (–)-α-Pinene reduced trap catch by 40 and 53%, respectively, at the highest release rate tested. While a combination of R-(+)-limonene and (+)-α-pinene resulted in a 97% reduction in the number of P. juglandis caught, the combination did not consistently result in greater flight trap catch reduction than individual limonene enantiomers.The repellent effect of limonene may be valuable in the development of a semiochemical-based tool for management of P. juglandis and thousand cankers disease. |
---|---|
ISSN: | 0022-0493 1938-291X |
DOI: | 10.1093/jee/toaa257 |