Loading…

Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk

Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologi...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2020-12, Vol.104 (23), p.10019-10031
Main Authors: de Queirós, Lívia Dias, de Ávila, Amanda Rejane Alves, Botaro, Andressa Vianna, Chirotto, Danielle Branta Lopes, Macedo, Juliana Alves, Macedo, Gabriela Alves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433
cites cdi_FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433
container_end_page 10031
container_issue 23
container_start_page 10019
container_title Applied microbiology and biotechnology
container_volume 104
creator de Queirós, Lívia Dias
de Ávila, Amanda Rejane Alves
Botaro, Andressa Vianna
Chirotto, Danielle Branta Lopes
Macedo, Juliana Alves
Macedo, Gabriela Alves
description Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologically active forms in soymilk. Seven different cultures of lactic acid bacteria and bifidobacteria associated with the action of immobilized tannase enzyme were screened for isoflavone glycoside biotransformation ability. The biotransformed soymilk samples were characterized regarding isoflavone profile, total phenolic content, and in vitro antioxidant activities. All bacterial strains showed a good growth capacity in soymilk matrix and produced β-glucosidase enzyme, which hydrolyzed isoflavone glycosides into aglycones in soymilk after 24 h of fermentation. The microbial fermentation followed by tannase reaction (FT processes) resulted in the highest increase of bioactive aglycones (10.3- to 13.1-fold for daidzein, 10.4- to 12.3-fold for genistein, and 3.8- to 4.7-fold for glycitein), compared to control soymilk. Further, FT processes enhanced the total phenolic content (53–70%) and antioxidant activity by ORAC (69–102%) and FRAP (49–71%) assays of the soymilk matrix. Therefore, the combination of microbial fermentation and tannase treatment is a promising strategy to obtain a fermented soy product rich in bioactive isoflavones with greater health-promoting potential. Key points • Bacterial cultures and tannase enzyme displayed isoflavone deglycosylation activity. • The addition of tannase following the fermentation maximized the isoflavone conversion. • Increased isoflavone aglycones contributed to the improved antioxidant activity of soymilk.
doi_str_mv 10.1007/s00253-020-10986-1
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2456863918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641757823</galeid><sourcerecordid>A641757823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433</originalsourceid><addsrcrecordid>eNp9kt9rFDEQxxdR7Fn9B3yQBV_sw9ZMkk12H8uhtVAQ_PEcktzkTN1NzmS39P57s161nIiEMJDvZyaZybeqXgI5B0Lk20wIbVlDKGmA9J1o4FG1As5oQwTwx9WKgGwb2fbdSfUs5xtCgHZCPK1OGAMmQMpVZdZxND7gpvY5ukHfxoC5Nj5OSYfsYhr15GOofbAJdS7a9A0XXdvJ32Ktw6bsgtz5TYm11Ttt_bSvo6tz3I9--P68euL0kPHFfTytvr5_92X9obn-eHm1vrhubAtsalopmETRAZXGGWM63UuUou-5ES20RXFOcsPQtUJYdIL0PUHOKRCKjDN2Wr051N2l-GPGPKnRZ4vDoAPGOSvKW9EJ1kNX0Nd_oTdxTqG8rlASBHTAyQO11QMqH9wyFLsUVReCl9nKji7Xnv-DKmuDo7dlnM6X86OEs6OEwkx4N231nLO6-vzpmKUH1qaYc0KndsmPOu0VELWYQB1MoIoJ1C8TKChJr-67m82Imz8pv3-9AOwA5CKFLaaH9v9T9ieV17p9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471618140</pqid></control><display><type>article</type><title>Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>de Queirós, Lívia Dias ; de Ávila, Amanda Rejane Alves ; Botaro, Andressa Vianna ; Chirotto, Danielle Branta Lopes ; Macedo, Juliana Alves ; Macedo, Gabriela Alves</creator><creatorcontrib>de Queirós, Lívia Dias ; de Ávila, Amanda Rejane Alves ; Botaro, Andressa Vianna ; Chirotto, Danielle Branta Lopes ; Macedo, Juliana Alves ; Macedo, Gabriela Alves</creatorcontrib><description>Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologically active forms in soymilk. Seven different cultures of lactic acid bacteria and bifidobacteria associated with the action of immobilized tannase enzyme were screened for isoflavone glycoside biotransformation ability. The biotransformed soymilk samples were characterized regarding isoflavone profile, total phenolic content, and in vitro antioxidant activities. All bacterial strains showed a good growth capacity in soymilk matrix and produced β-glucosidase enzyme, which hydrolyzed isoflavone glycosides into aglycones in soymilk after 24 h of fermentation. The microbial fermentation followed by tannase reaction (FT processes) resulted in the highest increase of bioactive aglycones (10.3- to 13.1-fold for daidzein, 10.4- to 12.3-fold for genistein, and 3.8- to 4.7-fold for glycitein), compared to control soymilk. Further, FT processes enhanced the total phenolic content (53–70%) and antioxidant activity by ORAC (69–102%) and FRAP (49–71%) assays of the soymilk matrix. Therefore, the combination of microbial fermentation and tannase treatment is a promising strategy to obtain a fermented soy product rich in bioactive isoflavones with greater health-promoting potential. Key points • Bacterial cultures and tannase enzyme displayed isoflavone deglycosylation activity. • The addition of tannase following the fermentation maximized the isoflavone conversion. • Increased isoflavone aglycones contributed to the improved antioxidant activity of soymilk.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10986-1</identifier><identifier>PMID: 33136177</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aglycones ; Antioxidants ; Bacteria ; Biological activity ; Biomedical and Life Sciences ; Biotechnological Products and Process Engineering ; Biotechnology ; Biotransformation ; Cellobiase ; Daidzein ; Deglycosylation ; Enzymes ; Fermentation ; Food Microbiology ; Genistein ; Glucosidase ; Glycosides ; Health promotion ; Isoflavones ; Isoflavones - analysis ; Lactic acid ; Lactic acid bacteria ; Life Sciences ; Metabolites ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Nutritional aspects ; Phenolic compounds ; Phenols ; Physiological aspects ; Plant-based beverages ; Secondary metabolites ; Soy Milk ; Soya bean milk ; Soybean milk ; Soybeans ; Soymilk ; Tannase ; β-Glucosidase</subject><ispartof>Applied microbiology and biotechnology, 2020-12, Vol.104 (23), p.10019-10031</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433</citedby><cites>FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433</cites><orcidid>0000-0001-7504-8111 ; 0000-0002-5349-3588 ; 0000-0003-2005-456X ; 0000-0003-4466-3853 ; 0000-0001-5255-2243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471618140/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471618140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33136177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Queirós, Lívia Dias</creatorcontrib><creatorcontrib>de Ávila, Amanda Rejane Alves</creatorcontrib><creatorcontrib>Botaro, Andressa Vianna</creatorcontrib><creatorcontrib>Chirotto, Danielle Branta Lopes</creatorcontrib><creatorcontrib>Macedo, Juliana Alves</creatorcontrib><creatorcontrib>Macedo, Gabriela Alves</creatorcontrib><title>Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologically active forms in soymilk. Seven different cultures of lactic acid bacteria and bifidobacteria associated with the action of immobilized tannase enzyme were screened for isoflavone glycoside biotransformation ability. The biotransformed soymilk samples were characterized regarding isoflavone profile, total phenolic content, and in vitro antioxidant activities. All bacterial strains showed a good growth capacity in soymilk matrix and produced β-glucosidase enzyme, which hydrolyzed isoflavone glycosides into aglycones in soymilk after 24 h of fermentation. The microbial fermentation followed by tannase reaction (FT processes) resulted in the highest increase of bioactive aglycones (10.3- to 13.1-fold for daidzein, 10.4- to 12.3-fold for genistein, and 3.8- to 4.7-fold for glycitein), compared to control soymilk. Further, FT processes enhanced the total phenolic content (53–70%) and antioxidant activity by ORAC (69–102%) and FRAP (49–71%) assays of the soymilk matrix. Therefore, the combination of microbial fermentation and tannase treatment is a promising strategy to obtain a fermented soy product rich in bioactive isoflavones with greater health-promoting potential. Key points • Bacterial cultures and tannase enzyme displayed isoflavone deglycosylation activity. • The addition of tannase following the fermentation maximized the isoflavone conversion. • Increased isoflavone aglycones contributed to the improved antioxidant activity of soymilk.</description><subject>Aglycones</subject><subject>Antioxidants</subject><subject>Bacteria</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Biotransformation</subject><subject>Cellobiase</subject><subject>Daidzein</subject><subject>Deglycosylation</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Food Microbiology</subject><subject>Genistein</subject><subject>Glucosidase</subject><subject>Glycosides</subject><subject>Health promotion</subject><subject>Isoflavones</subject><subject>Isoflavones - analysis</subject><subject>Lactic acid</subject><subject>Lactic acid bacteria</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nutritional aspects</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Physiological aspects</subject><subject>Plant-based beverages</subject><subject>Secondary metabolites</subject><subject>Soy Milk</subject><subject>Soya bean milk</subject><subject>Soybean milk</subject><subject>Soybeans</subject><subject>Soymilk</subject><subject>Tannase</subject><subject>β-Glucosidase</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kt9rFDEQxxdR7Fn9B3yQBV_sw9ZMkk12H8uhtVAQ_PEcktzkTN1NzmS39P57s161nIiEMJDvZyaZybeqXgI5B0Lk20wIbVlDKGmA9J1o4FG1As5oQwTwx9WKgGwb2fbdSfUs5xtCgHZCPK1OGAMmQMpVZdZxND7gpvY5ukHfxoC5Nj5OSYfsYhr15GOofbAJdS7a9A0XXdvJ32Ktw6bsgtz5TYm11Ttt_bSvo6tz3I9--P68euL0kPHFfTytvr5_92X9obn-eHm1vrhubAtsalopmETRAZXGGWM63UuUou-5ES20RXFOcsPQtUJYdIL0PUHOKRCKjDN2Wr051N2l-GPGPKnRZ4vDoAPGOSvKW9EJ1kNX0Nd_oTdxTqG8rlASBHTAyQO11QMqH9wyFLsUVReCl9nKji7Xnv-DKmuDo7dlnM6X86OEs6OEwkx4N231nLO6-vzpmKUH1qaYc0KndsmPOu0VELWYQB1MoIoJ1C8TKChJr-67m82Imz8pv3-9AOwA5CKFLaaH9v9T9ieV17p9</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>de Queirós, Lívia Dias</creator><creator>de Ávila, Amanda Rejane Alves</creator><creator>Botaro, Andressa Vianna</creator><creator>Chirotto, Danielle Branta Lopes</creator><creator>Macedo, Juliana Alves</creator><creator>Macedo, Gabriela Alves</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7504-8111</orcidid><orcidid>https://orcid.org/0000-0002-5349-3588</orcidid><orcidid>https://orcid.org/0000-0003-2005-456X</orcidid><orcidid>https://orcid.org/0000-0003-4466-3853</orcidid><orcidid>https://orcid.org/0000-0001-5255-2243</orcidid></search><sort><creationdate>20201201</creationdate><title>Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk</title><author>de Queirós, Lívia Dias ; de Ávila, Amanda Rejane Alves ; Botaro, Andressa Vianna ; Chirotto, Danielle Branta Lopes ; Macedo, Juliana Alves ; Macedo, Gabriela Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aglycones</topic><topic>Antioxidants</topic><topic>Bacteria</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Biotransformation</topic><topic>Cellobiase</topic><topic>Daidzein</topic><topic>Deglycosylation</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Food Microbiology</topic><topic>Genistein</topic><topic>Glucosidase</topic><topic>Glycosides</topic><topic>Health promotion</topic><topic>Isoflavones</topic><topic>Isoflavones - analysis</topic><topic>Lactic acid</topic><topic>Lactic acid bacteria</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nutritional aspects</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Physiological aspects</topic><topic>Plant-based beverages</topic><topic>Secondary metabolites</topic><topic>Soy Milk</topic><topic>Soya bean milk</topic><topic>Soybean milk</topic><topic>Soybeans</topic><topic>Soymilk</topic><topic>Tannase</topic><topic>β-Glucosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Queirós, Lívia Dias</creatorcontrib><creatorcontrib>de Ávila, Amanda Rejane Alves</creatorcontrib><creatorcontrib>Botaro, Andressa Vianna</creatorcontrib><creatorcontrib>Chirotto, Danielle Branta Lopes</creatorcontrib><creatorcontrib>Macedo, Juliana Alves</creatorcontrib><creatorcontrib>Macedo, Gabriela Alves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Queirós, Lívia Dias</au><au>de Ávila, Amanda Rejane Alves</au><au>Botaro, Andressa Vianna</au><au>Chirotto, Danielle Branta Lopes</au><au>Macedo, Juliana Alves</au><au>Macedo, Gabriela Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>104</volume><issue>23</issue><spage>10019</spage><epage>10031</epage><pages>10019-10031</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Isoflavones are phenolic secondary metabolites mainly occurring in soy and soybean products. Compared to glycoside forms, isoflavone aglycones present higher biological activities. This study evaluated the potential of microbial and enzymatic treatments in biotransformed isoflavones in their biologically active forms in soymilk. Seven different cultures of lactic acid bacteria and bifidobacteria associated with the action of immobilized tannase enzyme were screened for isoflavone glycoside biotransformation ability. The biotransformed soymilk samples were characterized regarding isoflavone profile, total phenolic content, and in vitro antioxidant activities. All bacterial strains showed a good growth capacity in soymilk matrix and produced β-glucosidase enzyme, which hydrolyzed isoflavone glycosides into aglycones in soymilk after 24 h of fermentation. The microbial fermentation followed by tannase reaction (FT processes) resulted in the highest increase of bioactive aglycones (10.3- to 13.1-fold for daidzein, 10.4- to 12.3-fold for genistein, and 3.8- to 4.7-fold for glycitein), compared to control soymilk. Further, FT processes enhanced the total phenolic content (53–70%) and antioxidant activity by ORAC (69–102%) and FRAP (49–71%) assays of the soymilk matrix. Therefore, the combination of microbial fermentation and tannase treatment is a promising strategy to obtain a fermented soy product rich in bioactive isoflavones with greater health-promoting potential. Key points • Bacterial cultures and tannase enzyme displayed isoflavone deglycosylation activity. • The addition of tannase following the fermentation maximized the isoflavone conversion. • Increased isoflavone aglycones contributed to the improved antioxidant activity of soymilk.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33136177</pmid><doi>10.1007/s00253-020-10986-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7504-8111</orcidid><orcidid>https://orcid.org/0000-0002-5349-3588</orcidid><orcidid>https://orcid.org/0000-0003-2005-456X</orcidid><orcidid>https://orcid.org/0000-0003-4466-3853</orcidid><orcidid>https://orcid.org/0000-0001-5255-2243</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-12, Vol.104 (23), p.10019-10031
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2456863918
source ABI/INFORM Global; Springer Nature
subjects Aglycones
Antioxidants
Bacteria
Biological activity
Biomedical and Life Sciences
Biotechnological Products and Process Engineering
Biotechnology
Biotransformation
Cellobiase
Daidzein
Deglycosylation
Enzymes
Fermentation
Food Microbiology
Genistein
Glucosidase
Glycosides
Health promotion
Isoflavones
Isoflavones - analysis
Lactic acid
Lactic acid bacteria
Life Sciences
Metabolites
Methods
Microbial Genetics and Genomics
Microbiology
Microorganisms
Nutritional aspects
Phenolic compounds
Phenols
Physiological aspects
Plant-based beverages
Secondary metabolites
Soy Milk
Soya bean milk
Soybean milk
Soybeans
Soymilk
Tannase
β-Glucosidase
title Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20isoflavones%20biotransformation%20increases%20the%20bioactive%20and%20antioxidant%20capacity%20of%20soymilk&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=de%20Queir%C3%B3s,%20L%C3%ADvia%20Dias&rft.date=2020-12-01&rft.volume=104&rft.issue=23&rft.spage=10019&rft.epage=10031&rft.pages=10019-10031&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10986-1&rft_dat=%3Cgale_proqu%3EA641757823%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-57637e68127bfbbb8a97e76994b6515e68ff74b3ef566cef60990e442102e3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471618140&rft_id=info:pmid/33136177&rft_galeid=A641757823&rfr_iscdi=true