Loading…

Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech

Speech disorders linked to neurological problems affect person's ability to communicate through speech. Dysarthria is one of the speech disorders caused due to muscle weakness producing slow, slurred and less intelligible speech. Automatic intelligibility assessment of dysarthria from speech ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2020-12, Vol.28 (12), p.2880-2889
Main Authors: H M, Chandrashekar, Karjigi, Veena, Sreedevi, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3
cites cdi_FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3
container_end_page 2889
container_issue 12
container_start_page 2880
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 28
creator H M, Chandrashekar
Karjigi, Veena
Sreedevi, N
description Speech disorders linked to neurological problems affect person's ability to communicate through speech. Dysarthria is one of the speech disorders caused due to muscle weakness producing slow, slurred and less intelligible speech. Automatic intelligibility assessment of dysarthria from speech can be used as a promising clinical tool in treatment. This paper explores the use of perceptually enhanced Fourier transform spectrograms and Constant-Q transform spectrograms with CNN to assess word level and sentence level intelligibility of dysarthric speech from UA and TORGO databases. Constant-Q transform and perceptually enhanced mel warped STFT spectrograms performed better in the classification task.
doi_str_mv 10.1109/TNSRE.2020.3035392
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457650884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247264</ieee_id><sourcerecordid>2483254896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3</originalsourceid><addsrcrecordid>eNpdkUtPwkAUhSdGI4j-AU1MEzduindefSwJgpIQTQDXTTu9hSG0xZliwr93CsjC1UzmfufkzD2E3FPoUwrxy-JjPhv1GTDoc-CSx-yCdKmUkQ-MwmV758IXnEGH3Fi7BqBhIMNr0uGcChqEvEvKSfWDttHLtNF15dWF96qLAg1WjbfQJfpjg987rNTem-HWoHWDA2q9ojbepGpws9FLnemNbvbewFq0tmzVrdXepqZZGa28-RZRrW7JVZFuLN6dzh75Go8Ww3d_-vk2GQ6mvuKSNn6Qx5hTKtOM81zlEchMSYAsFbFCZEIKycKMhiFzn2CxCiTE7qEIoFCMKsV75PnouzW1S2-bpNRWuaRphfXOJs7CbQKiSDj06R-6rnemcukcFXEmRRQHjmJHSpnaWoNFsjW6TM0-oZC0ZSSHMpK2jORUhhM9nqx3WYn5WfK3fQc8HAGNiOdxzETIAsF_AU1ujvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483254896</pqid></control><display><type>article</type><title>Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech</title><source>Alma/SFX Local Collection</source><creator>H M, Chandrashekar ; Karjigi, Veena ; Sreedevi, N</creator><creatorcontrib>H M, Chandrashekar ; Karjigi, Veena ; Sreedevi, N</creatorcontrib><description>Speech disorders linked to neurological problems affect person's ability to communicate through speech. Dysarthria is one of the speech disorders caused due to muscle weakness producing slow, slurred and less intelligible speech. Automatic intelligibility assessment of dysarthria from speech can be used as a promising clinical tool in treatment. This paper explores the use of perceptually enhanced Fourier transform spectrograms and Constant-Q transform spectrograms with CNN to assess word level and sentence level intelligibility of dysarthric speech from UA and TORGO databases. Constant-Q transform and perceptually enhanced mel warped STFT spectrograms performed better in the classification task.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2020.3035392</identifier><identifier>PMID: 33141673</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; constant-Q transform ; convolutional neural networks ; Disorders ; Dysarthria ; Feature extraction ; Fourier transforms ; Intelligibility ; intelligibility assessment ; Muscles ; Neurological diseases ; perceptual enhancement ; short time Fourier transform ; Signal resolution ; single frequency filtering ; Spectrogram ; Spectrograms ; Speech ; Speech disorders ; Time-frequency analysis ; Transforms</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2020-12, Vol.28 (12), p.2880-2889</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3</citedby><cites>FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3</cites><orcidid>0000-0003-3186-1762 ; 0000-0002-9268-5080 ; 0000-0002-2466-486X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33141673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>H M, Chandrashekar</creatorcontrib><creatorcontrib>Karjigi, Veena</creatorcontrib><creatorcontrib>Sreedevi, N</creatorcontrib><title>Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Speech disorders linked to neurological problems affect person's ability to communicate through speech. Dysarthria is one of the speech disorders caused due to muscle weakness producing slow, slurred and less intelligible speech. Automatic intelligibility assessment of dysarthria from speech can be used as a promising clinical tool in treatment. This paper explores the use of perceptually enhanced Fourier transform spectrograms and Constant-Q transform spectrograms with CNN to assess word level and sentence level intelligibility of dysarthric speech from UA and TORGO databases. Constant-Q transform and perceptually enhanced mel warped STFT spectrograms performed better in the classification task.</description><subject>Acoustics</subject><subject>constant-Q transform</subject><subject>convolutional neural networks</subject><subject>Disorders</subject><subject>Dysarthria</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Intelligibility</subject><subject>intelligibility assessment</subject><subject>Muscles</subject><subject>Neurological diseases</subject><subject>perceptual enhancement</subject><subject>short time Fourier transform</subject><subject>Signal resolution</subject><subject>single frequency filtering</subject><subject>Spectrogram</subject><subject>Spectrograms</subject><subject>Speech</subject><subject>Speech disorders</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtPwkAUhSdGI4j-AU1MEzduindefSwJgpIQTQDXTTu9hSG0xZliwr93CsjC1UzmfufkzD2E3FPoUwrxy-JjPhv1GTDoc-CSx-yCdKmUkQ-MwmV758IXnEGH3Fi7BqBhIMNr0uGcChqEvEvKSfWDttHLtNF15dWF96qLAg1WjbfQJfpjg987rNTem-HWoHWDA2q9ojbepGpws9FLnemNbvbewFq0tmzVrdXepqZZGa28-RZRrW7JVZFuLN6dzh75Go8Ww3d_-vk2GQ6mvuKSNn6Qx5hTKtOM81zlEchMSYAsFbFCZEIKycKMhiFzn2CxCiTE7qEIoFCMKsV75PnouzW1S2-bpNRWuaRphfXOJs7CbQKiSDj06R-6rnemcukcFXEmRRQHjmJHSpnaWoNFsjW6TM0-oZC0ZSSHMpK2jORUhhM9nqx3WYn5WfK3fQc8HAGNiOdxzETIAsF_AU1ujvE</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>H M, Chandrashekar</creator><creator>Karjigi, Veena</creator><creator>Sreedevi, N</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3186-1762</orcidid><orcidid>https://orcid.org/0000-0002-9268-5080</orcidid><orcidid>https://orcid.org/0000-0002-2466-486X</orcidid></search><sort><creationdate>20201201</creationdate><title>Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech</title><author>H M, Chandrashekar ; Karjigi, Veena ; Sreedevi, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>constant-Q transform</topic><topic>convolutional neural networks</topic><topic>Disorders</topic><topic>Dysarthria</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Intelligibility</topic><topic>intelligibility assessment</topic><topic>Muscles</topic><topic>Neurological diseases</topic><topic>perceptual enhancement</topic><topic>short time Fourier transform</topic><topic>Signal resolution</topic><topic>single frequency filtering</topic><topic>Spectrogram</topic><topic>Spectrograms</topic><topic>Speech</topic><topic>Speech disorders</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>H M, Chandrashekar</creatorcontrib><creatorcontrib>Karjigi, Veena</creatorcontrib><creatorcontrib>Sreedevi, N</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>H M, Chandrashekar</au><au>Karjigi, Veena</au><au>Sreedevi, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>28</volume><issue>12</issue><spage>2880</spage><epage>2889</epage><pages>2880-2889</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Speech disorders linked to neurological problems affect person's ability to communicate through speech. Dysarthria is one of the speech disorders caused due to muscle weakness producing slow, slurred and less intelligible speech. Automatic intelligibility assessment of dysarthria from speech can be used as a promising clinical tool in treatment. This paper explores the use of perceptually enhanced Fourier transform spectrograms and Constant-Q transform spectrograms with CNN to assess word level and sentence level intelligibility of dysarthric speech from UA and TORGO databases. Constant-Q transform and perceptually enhanced mel warped STFT spectrograms performed better in the classification task.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33141673</pmid><doi>10.1109/TNSRE.2020.3035392</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3186-1762</orcidid><orcidid>https://orcid.org/0000-0002-9268-5080</orcidid><orcidid>https://orcid.org/0000-0002-2466-486X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2020-12, Vol.28 (12), p.2880-2889
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_miscellaneous_2457650884
source Alma/SFX Local Collection
subjects Acoustics
constant-Q transform
convolutional neural networks
Disorders
Dysarthria
Feature extraction
Fourier transforms
Intelligibility
intelligibility assessment
Muscles
Neurological diseases
perceptual enhancement
short time Fourier transform
Signal resolution
single frequency filtering
Spectrogram
Spectrograms
Speech
Speech disorders
Time-frequency analysis
Transforms
title Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Different%20Time-Frequency%20Representations%20for%20Intelligibility%20Assessment%20of%20Dysarthric%20Speech&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=H%20M,%20Chandrashekar&rft.date=2020-12-01&rft.volume=28&rft.issue=12&rft.spage=2880&rft.epage=2889&rft.pages=2880-2889&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2020.3035392&rft_dat=%3Cproquest_ieee_%3E2483254896%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-6d9ed115ab33dcd805bc500ba49cee2454527b177216729c650927bf60fc21cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483254896&rft_id=info:pmid/33141673&rft_ieee_id=9247264&rfr_iscdi=true