Loading…
The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation
BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and co...
Saved in:
Published in: | Journal of the science of food and agriculture 2021-05, Vol.101 (7), p.2863-2868 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3 |
container_end_page | 2868 |
container_issue | 7 |
container_start_page | 2863 |
container_title | Journal of the science of food and agriculture |
container_volume | 101 |
creator | Santra, Kalyan Song, Anthony Petrich, Jacob W Rasmussen, Mark A |
description | BACKGROUND
Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH.
RESULTS
We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide.
CONCLUSIONS
The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.10917 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457971102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509215271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</originalsourceid><addsrcrecordid>eNp9kMFqGzEURUVJqN20m35AEGRTCpPoSaPRTHbB1G1CIIukayHPPNkympEjjSn--8ix00UWWT2Bzj1cLiHfgV0CY_xqnazJrwbUJzLNVxWMATsh0_zJCwkln5AvKa0ZY01TVZ_JRAiQIJWYEv20QtrhMprOjC4MNFjarnyIYbPaeU83btnjMCbqBtoZF3c0OW-WeE3HHBxdj94NuE-ZwWAMC9dSi3GfefV9JafW-ITfjveM_J3_epr9Ke4fft_Obu6LVkilCuAGS2EBhJKtqBrWSiPtQtTVoutsbluXMpdmtgJZcs7KGksrZGdrqI3K4Bn5cfBuYnjeYhp171KL3psBwzZpXkrVKADGM3rxDl2HbRxyO80lazhIriBTPw9UG0NKEa3eRNebuNPA9H52vZ9dv86e4fOjcrvosfuPvu2cATgA_5zH3Qcqffc4vzlIXwDOL4vz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509215271</pqid></control><display><type>article</type><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</creator><creatorcontrib>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</creatorcontrib><description>BACKGROUND
Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH.
RESULTS
We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide.
CONCLUSIONS
The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10917</identifier><identifier>PMID: 33151573</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>absorption ; Absorption spectra ; Alfalfa ; Anaerobiosis ; Animal Feed - analysis ; Animals ; Cattle ; Cattle - metabolism ; Chlorophyll ; Chlorophyll - chemistry ; Chlorophyll - metabolism ; Corn silage ; Cow's milk ; Dairy cattle ; Degradation ; Degradation products ; Digestion ; Female ; Fermentation ; Fluorescence ; Grasses ; Lactic acid ; Magnesium ; Medicago sativa - chemistry ; Medicago sativa - metabolism ; Metabolites ; Milk ; Milk - chemistry ; Milk - metabolism ; Pasture ; Phaeophytin ; Phytol ; Pigments ; Rumen - chemistry ; Rumen - metabolism ; Silage ; Silage - analysis ; Spectrophotometry, Atomic ; Zea mays - chemistry ; Zea mays - metabolism</subject><ispartof>Journal of the science of food and agriculture, 2021-05, Vol.101 (7), p.2863-2868</ispartof><rights>2020 Society of Chemical Industry</rights><rights>2020 Society of Chemical Industry.</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</citedby><cites>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</cites><orcidid>0000-0002-0935-509X ; 0000-0002-8584-1946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33151573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santra, Kalyan</creatorcontrib><creatorcontrib>Song, Anthony</creatorcontrib><creatorcontrib>Petrich, Jacob W</creatorcontrib><creatorcontrib>Rasmussen, Mark A</creatorcontrib><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH.
RESULTS
We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide.
CONCLUSIONS
The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</description><subject>absorption</subject><subject>Absorption spectra</subject><subject>Alfalfa</subject><subject>Anaerobiosis</subject><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>Cattle</subject><subject>Cattle - metabolism</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>Chlorophyll - metabolism</subject><subject>Corn silage</subject><subject>Cow's milk</subject><subject>Dairy cattle</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Digestion</subject><subject>Female</subject><subject>Fermentation</subject><subject>Fluorescence</subject><subject>Grasses</subject><subject>Lactic acid</subject><subject>Magnesium</subject><subject>Medicago sativa - chemistry</subject><subject>Medicago sativa - metabolism</subject><subject>Metabolites</subject><subject>Milk</subject><subject>Milk - chemistry</subject><subject>Milk - metabolism</subject><subject>Pasture</subject><subject>Phaeophytin</subject><subject>Phytol</subject><subject>Pigments</subject><subject>Rumen - chemistry</subject><subject>Rumen - metabolism</subject><subject>Silage</subject><subject>Silage - analysis</subject><subject>Spectrophotometry, Atomic</subject><subject>Zea mays - chemistry</subject><subject>Zea mays - metabolism</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEURUVJqN20m35AEGRTCpPoSaPRTHbB1G1CIIukayHPPNkympEjjSn--8ix00UWWT2Bzj1cLiHfgV0CY_xqnazJrwbUJzLNVxWMATsh0_zJCwkln5AvKa0ZY01TVZ_JRAiQIJWYEv20QtrhMprOjC4MNFjarnyIYbPaeU83btnjMCbqBtoZF3c0OW-WeE3HHBxdj94NuE-ZwWAMC9dSi3GfefV9JafW-ITfjveM_J3_epr9Ke4fft_Obu6LVkilCuAGS2EBhJKtqBrWSiPtQtTVoutsbluXMpdmtgJZcs7KGksrZGdrqI3K4Bn5cfBuYnjeYhp171KL3psBwzZpXkrVKADGM3rxDl2HbRxyO80lazhIriBTPw9UG0NKEa3eRNebuNPA9H52vZ9dv86e4fOjcrvosfuPvu2cATgA_5zH3Qcqffc4vzlIXwDOL4vz</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Santra, Kalyan</creator><creator>Song, Anthony</creator><creator>Petrich, Jacob W</creator><creator>Rasmussen, Mark A</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0935-509X</orcidid><orcidid>https://orcid.org/0000-0002-8584-1946</orcidid></search><sort><creationdate>202105</creationdate><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><author>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>absorption</topic><topic>Absorption spectra</topic><topic>Alfalfa</topic><topic>Anaerobiosis</topic><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>Cattle</topic><topic>Cattle - metabolism</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>Chlorophyll - metabolism</topic><topic>Corn silage</topic><topic>Cow's milk</topic><topic>Dairy cattle</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Digestion</topic><topic>Female</topic><topic>Fermentation</topic><topic>Fluorescence</topic><topic>Grasses</topic><topic>Lactic acid</topic><topic>Magnesium</topic><topic>Medicago sativa - chemistry</topic><topic>Medicago sativa - metabolism</topic><topic>Metabolites</topic><topic>Milk</topic><topic>Milk - chemistry</topic><topic>Milk - metabolism</topic><topic>Pasture</topic><topic>Phaeophytin</topic><topic>Phytol</topic><topic>Pigments</topic><topic>Rumen - chemistry</topic><topic>Rumen - metabolism</topic><topic>Silage</topic><topic>Silage - analysis</topic><topic>Spectrophotometry, Atomic</topic><topic>Zea mays - chemistry</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santra, Kalyan</creatorcontrib><creatorcontrib>Song, Anthony</creatorcontrib><creatorcontrib>Petrich, Jacob W</creatorcontrib><creatorcontrib>Rasmussen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santra, Kalyan</au><au>Song, Anthony</au><au>Petrich, Jacob W</au><au>Rasmussen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2021-05</date><risdate>2021</risdate><volume>101</volume><issue>7</issue><spage>2863</spage><epage>2868</epage><pages>2863-2868</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH.
RESULTS
We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide.
CONCLUSIONS
The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>33151573</pmid><doi>10.1002/jsfa.10917</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0935-509X</orcidid><orcidid>https://orcid.org/0000-0002-8584-1946</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2021-05, Vol.101 (7), p.2863-2868 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2457971102 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | absorption Absorption spectra Alfalfa Anaerobiosis Animal Feed - analysis Animals Cattle Cattle - metabolism Chlorophyll Chlorophyll - chemistry Chlorophyll - metabolism Corn silage Cow's milk Dairy cattle Degradation Degradation products Digestion Female Fermentation Fluorescence Grasses Lactic acid Magnesium Medicago sativa - chemistry Medicago sativa - metabolism Metabolites Milk Milk - chemistry Milk - metabolism Pasture Phaeophytin Phytol Pigments Rumen - chemistry Rumen - metabolism Silage Silage - analysis Spectrophotometry, Atomic Zea mays - chemistry Zea mays - metabolism |
title | The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20degradation%20of%20chlorophyll%20pigments%20in%20dairy%20silage:%20the%20timeline%20of%20anaerobic%20fermentation&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Santra,%20Kalyan&rft.date=2021-05&rft.volume=101&rft.issue=7&rft.spage=2863&rft.epage=2868&rft.pages=2863-2868&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10917&rft_dat=%3Cproquest_cross%3E2509215271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509215271&rft_id=info:pmid/33151573&rfr_iscdi=true |