Loading…

The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation

BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the science of food and agriculture 2021-05, Vol.101 (7), p.2863-2868
Main Authors: Santra, Kalyan, Song, Anthony, Petrich, Jacob W, Rasmussen, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3
cites cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3
container_end_page 2868
container_issue 7
container_start_page 2863
container_title Journal of the science of food and agriculture
container_volume 101
creator Santra, Kalyan
Song, Anthony
Petrich, Jacob W
Rasmussen, Mark A
description BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH. RESULTS We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide. CONCLUSIONS The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.10917
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2457971102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509215271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</originalsourceid><addsrcrecordid>eNp9kMFqGzEURUVJqN20m35AEGRTCpPoSaPRTHbB1G1CIIukayHPPNkympEjjSn--8ix00UWWT2Bzj1cLiHfgV0CY_xqnazJrwbUJzLNVxWMATsh0_zJCwkln5AvKa0ZY01TVZ_JRAiQIJWYEv20QtrhMprOjC4MNFjarnyIYbPaeU83btnjMCbqBtoZF3c0OW-WeE3HHBxdj94NuE-ZwWAMC9dSi3GfefV9JafW-ITfjveM_J3_epr9Ke4fft_Obu6LVkilCuAGS2EBhJKtqBrWSiPtQtTVoutsbluXMpdmtgJZcs7KGksrZGdrqI3K4Bn5cfBuYnjeYhp171KL3psBwzZpXkrVKADGM3rxDl2HbRxyO80lazhIriBTPw9UG0NKEa3eRNebuNPA9H52vZ9dv86e4fOjcrvosfuPvu2cATgA_5zH3Qcqffc4vzlIXwDOL4vz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509215271</pqid></control><display><type>article</type><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</creator><creatorcontrib>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</creatorcontrib><description>BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH. RESULTS We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide. CONCLUSIONS The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.10917</identifier><identifier>PMID: 33151573</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>absorption ; Absorption spectra ; Alfalfa ; Anaerobiosis ; Animal Feed - analysis ; Animals ; Cattle ; Cattle - metabolism ; Chlorophyll ; Chlorophyll - chemistry ; Chlorophyll - metabolism ; Corn silage ; Cow's milk ; Dairy cattle ; Degradation ; Degradation products ; Digestion ; Female ; Fermentation ; Fluorescence ; Grasses ; Lactic acid ; Magnesium ; Medicago sativa - chemistry ; Medicago sativa - metabolism ; Metabolites ; Milk ; Milk - chemistry ; Milk - metabolism ; Pasture ; Phaeophytin ; Phytol ; Pigments ; Rumen - chemistry ; Rumen - metabolism ; Silage ; Silage - analysis ; Spectrophotometry, Atomic ; Zea mays - chemistry ; Zea mays - metabolism</subject><ispartof>Journal of the science of food and agriculture, 2021-05, Vol.101 (7), p.2863-2868</ispartof><rights>2020 Society of Chemical Industry</rights><rights>2020 Society of Chemical Industry.</rights><rights>Copyright © 2021 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</citedby><cites>FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</cites><orcidid>0000-0002-0935-509X ; 0000-0002-8584-1946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33151573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santra, Kalyan</creatorcontrib><creatorcontrib>Song, Anthony</creatorcontrib><creatorcontrib>Petrich, Jacob W</creatorcontrib><creatorcontrib>Rasmussen, Mark A</creatorcontrib><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH. RESULTS We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide. CONCLUSIONS The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</description><subject>absorption</subject><subject>Absorption spectra</subject><subject>Alfalfa</subject><subject>Anaerobiosis</subject><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>Cattle</subject><subject>Cattle - metabolism</subject><subject>Chlorophyll</subject><subject>Chlorophyll - chemistry</subject><subject>Chlorophyll - metabolism</subject><subject>Corn silage</subject><subject>Cow's milk</subject><subject>Dairy cattle</subject><subject>Degradation</subject><subject>Degradation products</subject><subject>Digestion</subject><subject>Female</subject><subject>Fermentation</subject><subject>Fluorescence</subject><subject>Grasses</subject><subject>Lactic acid</subject><subject>Magnesium</subject><subject>Medicago sativa - chemistry</subject><subject>Medicago sativa - metabolism</subject><subject>Metabolites</subject><subject>Milk</subject><subject>Milk - chemistry</subject><subject>Milk - metabolism</subject><subject>Pasture</subject><subject>Phaeophytin</subject><subject>Phytol</subject><subject>Pigments</subject><subject>Rumen - chemistry</subject><subject>Rumen - metabolism</subject><subject>Silage</subject><subject>Silage - analysis</subject><subject>Spectrophotometry, Atomic</subject><subject>Zea mays - chemistry</subject><subject>Zea mays - metabolism</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqGzEURUVJqN20m35AEGRTCpPoSaPRTHbB1G1CIIukayHPPNkympEjjSn--8ix00UWWT2Bzj1cLiHfgV0CY_xqnazJrwbUJzLNVxWMATsh0_zJCwkln5AvKa0ZY01TVZ_JRAiQIJWYEv20QtrhMprOjC4MNFjarnyIYbPaeU83btnjMCbqBtoZF3c0OW-WeE3HHBxdj94NuE-ZwWAMC9dSi3GfefV9JafW-ITfjveM_J3_epr9Ke4fft_Obu6LVkilCuAGS2EBhJKtqBrWSiPtQtTVoutsbluXMpdmtgJZcs7KGksrZGdrqI3K4Bn5cfBuYnjeYhp171KL3psBwzZpXkrVKADGM3rxDl2HbRxyO80lazhIriBTPw9UG0NKEa3eRNebuNPA9H52vZ9dv86e4fOjcrvosfuPvu2cATgA_5zH3Qcqffc4vzlIXwDOL4vz</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Santra, Kalyan</creator><creator>Song, Anthony</creator><creator>Petrich, Jacob W</creator><creator>Rasmussen, Mark A</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0935-509X</orcidid><orcidid>https://orcid.org/0000-0002-8584-1946</orcidid></search><sort><creationdate>202105</creationdate><title>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</title><author>Santra, Kalyan ; Song, Anthony ; Petrich, Jacob W ; Rasmussen, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>absorption</topic><topic>Absorption spectra</topic><topic>Alfalfa</topic><topic>Anaerobiosis</topic><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>Cattle</topic><topic>Cattle - metabolism</topic><topic>Chlorophyll</topic><topic>Chlorophyll - chemistry</topic><topic>Chlorophyll - metabolism</topic><topic>Corn silage</topic><topic>Cow's milk</topic><topic>Dairy cattle</topic><topic>Degradation</topic><topic>Degradation products</topic><topic>Digestion</topic><topic>Female</topic><topic>Fermentation</topic><topic>Fluorescence</topic><topic>Grasses</topic><topic>Lactic acid</topic><topic>Magnesium</topic><topic>Medicago sativa - chemistry</topic><topic>Medicago sativa - metabolism</topic><topic>Metabolites</topic><topic>Milk</topic><topic>Milk - chemistry</topic><topic>Milk - metabolism</topic><topic>Pasture</topic><topic>Phaeophytin</topic><topic>Phytol</topic><topic>Pigments</topic><topic>Rumen - chemistry</topic><topic>Rumen - metabolism</topic><topic>Silage</topic><topic>Silage - analysis</topic><topic>Spectrophotometry, Atomic</topic><topic>Zea mays - chemistry</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santra, Kalyan</creatorcontrib><creatorcontrib>Song, Anthony</creatorcontrib><creatorcontrib>Petrich, Jacob W</creatorcontrib><creatorcontrib>Rasmussen, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santra, Kalyan</au><au>Song, Anthony</au><au>Petrich, Jacob W</au><au>Rasmussen, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2021-05</date><risdate>2021</risdate><volume>101</volume><issue>7</issue><spage>2863</spage><epage>2868</epage><pages>2863-2868</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Detection of chlorophyll metabolites in milk has recently been suggested to be an indicator of a grass‐fed diet fed for cattle. Such a means of detection, however, is complicated when the grazing season is over because cattle can be fed fermented silage ingredients, such as alfalfa and corn silage. During fermentation, chlorophyll compounds and other pigments undergo degradation due to the accumulation of lactic acid and the resultant decline in pH. RESULTS We monitored degradation of chlorophyll compounds by measuring the fluorescence and absorption spectra of silage extracts. The spectroscopic evidence supports the hypothesis that chlorophylls are converted into fluorescent products, such as pheophytin, and further cleaved into pheophorbide. The degradation starts with dechelation and removal of the magnesium ion to produce pheophytin. Further removal of the phytol chain from pheophytin results in the production of pheophorbide. CONCLUSIONS The fluorescence intensity of these degradation products is reduced compared to that of the parent molecule. These findings are important in understanding the fluorescent signal in milk when cows consume silage rather than fresh pasture grass. © 2020 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>33151573</pmid><doi>10.1002/jsfa.10917</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0935-509X</orcidid><orcidid>https://orcid.org/0000-0002-8584-1946</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2021-05, Vol.101 (7), p.2863-2868
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2457971102
source Wiley-Blackwell Read & Publish Collection
subjects absorption
Absorption spectra
Alfalfa
Anaerobiosis
Animal Feed - analysis
Animals
Cattle
Cattle - metabolism
Chlorophyll
Chlorophyll - chemistry
Chlorophyll - metabolism
Corn silage
Cow's milk
Dairy cattle
Degradation
Degradation products
Digestion
Female
Fermentation
Fluorescence
Grasses
Lactic acid
Magnesium
Medicago sativa - chemistry
Medicago sativa - metabolism
Metabolites
Milk
Milk - chemistry
Milk - metabolism
Pasture
Phaeophytin
Phytol
Pigments
Rumen - chemistry
Rumen - metabolism
Silage
Silage - analysis
Spectrophotometry, Atomic
Zea mays - chemistry
Zea mays - metabolism
title The degradation of chlorophyll pigments in dairy silage: the timeline of anaerobic fermentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20degradation%20of%20chlorophyll%20pigments%20in%20dairy%20silage:%20the%20timeline%20of%20anaerobic%20fermentation&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Santra,%20Kalyan&rft.date=2021-05&rft.volume=101&rft.issue=7&rft.spage=2863&rft.epage=2868&rft.pages=2863-2868&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.10917&rft_dat=%3Cproquest_cross%3E2509215271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3577-12ae43f11375c3690c5a5fb386bddf3158453310f615422048e4f35df818a7fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509215271&rft_id=info:pmid/33151573&rfr_iscdi=true