Loading…

Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects

Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues in...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-12, Vol.32 (50), p.e2002450-n/a
Main Authors: Zhao, Qinghe, Song, Aoye, Ding, Shouxiang, Qin, Runzhi, Cui, Yanhui, Li, Shuning, Pan, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93
cites cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93
container_end_page n/a
container_issue 50
container_start_page e2002450
container_title Advanced materials (Weinheim)
container_volume 32
creator Zhao, Qinghe
Song, Aoye
Ding, Shouxiang
Qin, Runzhi
Cui, Yanhui
Li, Shuning
Pan, Feng
description Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed. The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.
doi_str_mv 10.1002/adma.202002450
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458955624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458955624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</originalsourceid><addsrcrecordid>eNqF0ctPGzEQB2CrKoKQ9tpjZamXXjbYa3vX5hbR8JBAQU17Xs2uZ1OjfQR7Q8h_j6NAkLj0ZB---WkehHzjbMIZS8_AtjBJWRr_UrFPZMRVyhPJjPpMRswIlZhM6hNyGsIDY8xkLDsmJ0LwTBmdj0h979F1A_oKGhhc39HF4GHA5Za6jt5Bt4QOA9L5s7MYaN17OmuwGnxf_cPWxSo669BHvhh6D0s8p7_xyeGGQmfpve_DKurwhRzV0AT8-vqOyd_L2Z-L6-R2fnVzMb1NKslTlmSal7EvZbXMsdYplkbkpQVIta3QorKlVdqWuVClAmFASsHLCkBykRs0Ykx-7nNXvn9cYxiK1oUKmyZO0a9DEZekjVJZKiP98YE-9Gvfxe6iyozRWgsV1WSvqjhK8FgXK-9a8NuCs2J3gWJ3geJwgVjw_TV2XbZoD_xt5RGYPdi4Brf_iSumv-6m7-EvOUSTIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469988835</pqid></control><display><type>article</type><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><source>Wiley</source><creator>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</creator><creatorcontrib>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</creatorcontrib><description>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed. The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002450</identifier><identifier>PMID: 33165987</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>battery ; Cathodes ; Crystal structure ; Electrode materials ; Energy storage ; Kinetics ; Magnesium ; Manganese dioxide ; manganese oxide ; Manganese oxides ; Materials science ; Molecular structure ; preintercalation strategy ; R&amp;D ; Research &amp; development ; Strategy ; Structural integrity ; Structural stability ; Zinc</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2002450-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</citedby><cites>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</cites><orcidid>0000-0002-1362-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33165987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Song, Aoye</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Cui, Yanhui</creatorcontrib><creatorcontrib>Li, Shuning</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed. The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</description><subject>battery</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>Manganese oxides</subject><subject>Materials science</subject><subject>Molecular structure</subject><subject>preintercalation strategy</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Strategy</subject><subject>Structural integrity</subject><subject>Structural stability</subject><subject>Zinc</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0ctPGzEQB2CrKoKQ9tpjZamXXjbYa3vX5hbR8JBAQU17Xs2uZ1OjfQR7Q8h_j6NAkLj0ZB---WkehHzjbMIZS8_AtjBJWRr_UrFPZMRVyhPJjPpMRswIlZhM6hNyGsIDY8xkLDsmJ0LwTBmdj0h979F1A_oKGhhc39HF4GHA5Za6jt5Bt4QOA9L5s7MYaN17OmuwGnxf_cPWxSo669BHvhh6D0s8p7_xyeGGQmfpve_DKurwhRzV0AT8-vqOyd_L2Z-L6-R2fnVzMb1NKslTlmSal7EvZbXMsdYplkbkpQVIta3QorKlVdqWuVClAmFASsHLCkBykRs0Ykx-7nNXvn9cYxiK1oUKmyZO0a9DEZekjVJZKiP98YE-9Gvfxe6iyozRWgsV1WSvqjhK8FgXK-9a8NuCs2J3gWJ3geJwgVjw_TV2XbZoD_xt5RGYPdi4Brf_iSumv-6m7-EvOUSTIQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhao, Qinghe</creator><creator>Song, Aoye</creator><creator>Ding, Shouxiang</creator><creator>Qin, Runzhi</creator><creator>Cui, Yanhui</creator><creator>Li, Shuning</creator><creator>Pan, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid></search><sort><creationdate>20201201</creationdate><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><author>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>battery</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>Manganese oxides</topic><topic>Materials science</topic><topic>Molecular structure</topic><topic>preintercalation strategy</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Strategy</topic><topic>Structural integrity</topic><topic>Structural stability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Song, Aoye</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Cui, Yanhui</creatorcontrib><creatorcontrib>Li, Shuning</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qinghe</au><au>Song, Aoye</au><au>Ding, Shouxiang</au><au>Qin, Runzhi</au><au>Cui, Yanhui</au><au>Li, Shuning</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>50</issue><spage>e2002450</spage><epage>n/a</epage><pages>e2002450-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed. The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33165987</pmid><doi>10.1002/adma.202002450</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2002450-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2458955624
source Wiley
subjects battery
Cathodes
Crystal structure
Electrode materials
Energy storage
Kinetics
Magnesium
Manganese dioxide
manganese oxide
Manganese oxides
Materials science
Molecular structure
preintercalation strategy
R&D
Research & development
Strategy
Structural integrity
Structural stability
Zinc
title Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preintercalation%20Strategy%20in%20Manganese%20Oxides%20for%20Electrochemical%20Energy%20Storage:%20Review%20and%20Prospects&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhao,%20Qinghe&rft.date=2020-12-01&rft.volume=32&rft.issue=50&rft.spage=e2002450&rft.epage=n/a&rft.pages=e2002450-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002450&rft_dat=%3Cproquest_cross%3E2458955624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469988835&rft_id=info:pmid/33165987&rfr_iscdi=true