Loading…
Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects
Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues in...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-12, Vol.32 (50), p.e2002450-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93 |
container_end_page | n/a |
container_issue | 50 |
container_start_page | e2002450 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Zhao, Qinghe Song, Aoye Ding, Shouxiang Qin, Runzhi Cui, Yanhui Li, Shuning Pan, Feng |
description | Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed.
The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed. |
doi_str_mv | 10.1002/adma.202002450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2458955624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458955624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</originalsourceid><addsrcrecordid>eNqF0ctPGzEQB2CrKoKQ9tpjZamXXjbYa3vX5hbR8JBAQU17Xs2uZ1OjfQR7Q8h_j6NAkLj0ZB---WkehHzjbMIZS8_AtjBJWRr_UrFPZMRVyhPJjPpMRswIlZhM6hNyGsIDY8xkLDsmJ0LwTBmdj0h979F1A_oKGhhc39HF4GHA5Za6jt5Bt4QOA9L5s7MYaN17OmuwGnxf_cPWxSo669BHvhh6D0s8p7_xyeGGQmfpve_DKurwhRzV0AT8-vqOyd_L2Z-L6-R2fnVzMb1NKslTlmSal7EvZbXMsdYplkbkpQVIta3QorKlVdqWuVClAmFASsHLCkBykRs0Ykx-7nNXvn9cYxiK1oUKmyZO0a9DEZekjVJZKiP98YE-9Gvfxe6iyozRWgsV1WSvqjhK8FgXK-9a8NuCs2J3gWJ3geJwgVjw_TV2XbZoD_xt5RGYPdi4Brf_iSumv-6m7-EvOUSTIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469988835</pqid></control><display><type>article</type><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><source>Wiley</source><creator>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</creator><creatorcontrib>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</creatorcontrib><description>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed.
The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002450</identifier><identifier>PMID: 33165987</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>battery ; Cathodes ; Crystal structure ; Electrode materials ; Energy storage ; Kinetics ; Magnesium ; Manganese dioxide ; manganese oxide ; Manganese oxides ; Materials science ; Molecular structure ; preintercalation strategy ; R&D ; Research & development ; Strategy ; Structural integrity ; Structural stability ; Zinc</subject><ispartof>Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2002450-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</citedby><cites>FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</cites><orcidid>0000-0002-1362-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33165987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Song, Aoye</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Cui, Yanhui</creatorcontrib><creatorcontrib>Li, Shuning</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed.
The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</description><subject>battery</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>Manganese oxides</subject><subject>Materials science</subject><subject>Molecular structure</subject><subject>preintercalation strategy</subject><subject>R&D</subject><subject>Research & development</subject><subject>Strategy</subject><subject>Structural integrity</subject><subject>Structural stability</subject><subject>Zinc</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0ctPGzEQB2CrKoKQ9tpjZamXXjbYa3vX5hbR8JBAQU17Xs2uZ1OjfQR7Q8h_j6NAkLj0ZB---WkehHzjbMIZS8_AtjBJWRr_UrFPZMRVyhPJjPpMRswIlZhM6hNyGsIDY8xkLDsmJ0LwTBmdj0h979F1A_oKGhhc39HF4GHA5Za6jt5Bt4QOA9L5s7MYaN17OmuwGnxf_cPWxSo669BHvhh6D0s8p7_xyeGGQmfpve_DKurwhRzV0AT8-vqOyd_L2Z-L6-R2fnVzMb1NKslTlmSal7EvZbXMsdYplkbkpQVIta3QorKlVdqWuVClAmFASsHLCkBykRs0Ykx-7nNXvn9cYxiK1oUKmyZO0a9DEZekjVJZKiP98YE-9Gvfxe6iyozRWgsV1WSvqjhK8FgXK-9a8NuCs2J3gWJ3geJwgVjw_TV2XbZoD_xt5RGYPdi4Brf_iSumv-6m7-EvOUSTIQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Zhao, Qinghe</creator><creator>Song, Aoye</creator><creator>Ding, Shouxiang</creator><creator>Qin, Runzhi</creator><creator>Cui, Yanhui</creator><creator>Li, Shuning</creator><creator>Pan, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid></search><sort><creationdate>20201201</creationdate><title>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</title><author>Zhao, Qinghe ; Song, Aoye ; Ding, Shouxiang ; Qin, Runzhi ; Cui, Yanhui ; Li, Shuning ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>battery</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>Manganese oxides</topic><topic>Materials science</topic><topic>Molecular structure</topic><topic>preintercalation strategy</topic><topic>R&D</topic><topic>Research & development</topic><topic>Strategy</topic><topic>Structural integrity</topic><topic>Structural stability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Song, Aoye</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Cui, Yanhui</creatorcontrib><creatorcontrib>Li, Shuning</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qinghe</au><au>Song, Aoye</au><au>Ding, Shouxiang</au><au>Qin, Runzhi</au><au>Cui, Yanhui</au><au>Li, Shuning</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>50</issue><spage>e2002450</spage><epage>n/a</epage><pages>e2002450-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Manganese oxides (MnO2) are promising cathode materials for various kinds of battery applications, including Li‐ion, Na‐ion, Mg‐ion, and Zn‐ion batteries, etc., due to their low‐cost and high‐capacity. However, the practical application of MnO2 cathodes has been restricted by some critical issues including low electronic conductivity, low utilization of discharge depth, sluggish diffusion kinetics, and structural instability upon cycling. Preintercalation of ions/molecules into the crystal structure with/without structural reconstruction provides essential optimizations to alleviate these issues. Here, the intrinsic advantages and mechanisms of the preintercalation strategy in enhancing electronic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing the structural integrity of MnO2 cathode materials are summarized. The current challenges related to the preintercalation strategy, along with prospects for the future research and development regarding its implementation in the design of high‐performance MnO2 cathodes for the next‐generation batteries are also discussed.
The intrinsic advantages and mechanisms of the preintercalation strategy in enhancing intrinsic conductivity, activating more active sites, promoting diffusion kinetics, and stabilizing structural integrity of MnO2 cathode materials are reviewed. Simultaneously, the current challenges for the preintercalation strategy for future research and development regarding the design of high‐performance MnO2 cathodes for the next‐generation batteries are discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33165987</pmid><doi>10.1002/adma.202002450</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-12, Vol.32 (50), p.e2002450-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2458955624 |
source | Wiley |
subjects | battery Cathodes Crystal structure Electrode materials Energy storage Kinetics Magnesium Manganese dioxide manganese oxide Manganese oxides Materials science Molecular structure preintercalation strategy R&D Research & development Strategy Structural integrity Structural stability Zinc |
title | Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preintercalation%20Strategy%20in%20Manganese%20Oxides%20for%20Electrochemical%20Energy%20Storage:%20Review%20and%20Prospects&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhao,%20Qinghe&rft.date=2020-12-01&rft.volume=32&rft.issue=50&rft.spage=e2002450&rft.epage=n/a&rft.pages=e2002450-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002450&rft_dat=%3Cproquest_cross%3E2458955624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4120-681b5985d847ef82eb937bdaa28dcede5dbd58db735b5a39a4431bcaa41379e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2469988835&rft_id=info:pmid/33165987&rfr_iscdi=true |