Loading…
Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes
Cell lysis is a critical step in genomics for the extraction of cellular components of downstream assays. Electrical lysis (EL) offers key advantages in terms of speed and non-interference. Here, we report a simple, chemical-free, and automated technique based on a microfluidic device with passivate...
Saved in:
Published in: | Biomicrofluidics 2020-11, Vol.14 (6), p.064101 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell lysis is a critical step in genomics for the extraction of cellular components of downstream assays. Electrical lysis (EL) offers key advantages in terms of speed and non-interference. Here, we report a simple, chemical-free, and automated technique based on a microfluidic device with passivated interdigitated electrodes with DC fields for continuous EL of cancer cells. We show that the critical problems in EL, bubble formation and electrode erosion that occur at high electric fields, can be circumvented by passivating the electrodes with a thin layer (∼18 μm) of polydimethylsiloxane. We present a numerical model for the prediction of the transmembrane potential (TMP) at different coating thicknesses and voltages to verify the critical TMP criterion for EL. Our simulations showed that the passivation layer results in a uniform electric field in the electrode region and offers a TMP in the range of 5–7 V at an applied voltage of 800 V, which is well above the critical TMP (∼1 V) required for EL. Experiments revealed that lysis efficiency increases with an increase in the electric field (E) and residence time (tr): a minimum E ∼ 105 V/m and tr ∼ 1.0 s are required for efficient lysis. EL of cancer cells is demonstrated and characterized using immunochemical staining and compared with chemical lysis. The lysis efficiency is found to be ∼98% at E = 4 × 105 V/m and tr = 0.72 s. The efficient recovery of genomic DNA via EL is demonstrated using agarose gel electrophoresis, proving the suitability of our method for integration with downstream on-chip assays. |
---|---|
ISSN: | 1932-1058 1932-1058 |
DOI: | 10.1063/5.0026046 |