Loading…
Accuracy of Preoperative Templating in Total Hip Arthroplasty With Special Focus on Stem Morphology: A Randomized Comparison Between Common Digital and Three-Dimensional Planning Using Biplanar Radiographs
Accurate preoperative planning is a key component of successful total hip arthroplasty (THA). The purpose of the present study was to compare the accuracy and reliability of three-dimensional (hipEOS) and common digital two-dimensional (TraumaCad) templating with special focus on stem morphology. 51...
Saved in:
Published in: | The Journal of arthroplasty 2021-03, Vol.36 (3), p.1149-1155 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate preoperative planning is a key component of successful total hip arthroplasty (THA). The purpose of the present study was to compare the accuracy and reliability of three-dimensional (hipEOS) and common digital two-dimensional (TraumaCad) templating with special focus on stem morphology.
51 patients undergoing THA were randomized to two groups. Preoperative planning was performed on 23 patients with hipEOS (3D) and on 28 patients with TraumaCad (2D) planning software. Planning results were compared with the implanted component size. Inter- and intraobserver reliability as well as planning accuracy of both planning methods with special focus on straight and short stem design were recorded.
Intraobserver reliability of both planning methods was good for component planning (ICC2,1: 0.835-0.967). Interobserver ICC2,1 for stem and cup planning were higher for 3D templating (3D ICC2,1: 0.906-0.918 vs. 2D ICC2,1: 0.835-0.843). Total stem and cup size predictions were within 2 sizes for 3D and within 3 sizes for 2D planning. Comparing short stem planning accuracy of both planning methods, absolute difference between implanted and planned component size was significantly lower in 3D planning (P = .029). There was no significant difference in straight stem (P = .935) and cup (P = .954) planning accuracy.
Our findings suggest that 3D templating with hipEOS software has a good overall reliability and may have a better planning accuracy of short stem prostheses than digital templating with TraumaCad software. Assuming that the number of implanted short stem prostheses will further increase in coming years, a more precise planning with 3D technique can contribute to improve surgery outcome. |
---|---|
ISSN: | 0883-5403 1532-8406 |
DOI: | 10.1016/j.arth.2020.10.016 |