Loading…

Coalescence and spreading of drops on liquid pools

[Display omitted] Oil spills have posed a serious threat to our marine and ecological environment in recent times. Containment of spills proliferating via small drops merging with oceans/seas is especially difficult since their mitigation is closely linked to the coalescence dependent spreading. Thi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2021-03, Vol.586, p.257-268
Main Authors: Kulkarni, Varun, Lolla, Venkata Yashasvi, Tamvada, Suhas Rao, Shirdade, Nikhil, Anand, Sushant
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Oil spills have posed a serious threat to our marine and ecological environment in recent times. Containment of spills proliferating via small drops merging with oceans/seas is especially difficult since their mitigation is closely linked to the coalescence dependent spreading. This inter-connectivity and its dependence on the physical properties of the drop has not been explored until now. Furthermore, pinch-off behavior and scaling laws for such three-phase systems have not been reported. We investigate the problem of gentle deposition of a single drop of oil on a pool of water, representative of an oil spill scenario. Methodical study of 11 different n-alkanes, polymers and hydrocarbons with varying viscosity and initial spreading coefficients is conducted. Regime map, scaling laws for deformation features and spreading behavior are established. The existence of a previously undocumented regime of delayed coalescence is reported. A novel application of the inertia-visco-capillary (I-V-C) scale collapses all experimental coalescence data on a single line while the early stage spreading is found to be either oscillatory or asymptotically reaching a constant value, depending on the viscosity of the oil drop unlike the well documented monotonic, power law late-time spreading behavior. These findings are equally applicable to applications like emulsions and enhanced oil recovery.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.10.089