Loading…
Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction
To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets. In a simulation study, the CS-SENSE algorithm was...
Saved in:
Published in: | Zeitschrift für medizinische Physik 2021-02, Vol.31 (1), p.48-57 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3 |
container_end_page | 57 |
container_issue | 1 |
container_start_page | 48 |
container_title | Zeitschrift für medizinische Physik |
container_volume | 31 |
creator | Lachner, Sebastian Utzschneider, Matthias Zaric, Olgica Minarikova, Lenka Ruck, Laurent Zbýň, Štefan Hensel, Bernhard Trattnig, Siegfried Uder, Michael Nagel, Armin M. |
description | To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets.
In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND).
The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506).
The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI. |
doi_str_mv | 10.1016/j.zemedi.2020.10.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2460770712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0939388920301057</els_id><sourcerecordid>2460770712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3</originalsourceid><addsrcrecordid>eNp9UcuK1EAULUTBtvUPXNTSTdp6ZCqJC0GaVgfGERxdF7erbtvVJFWxbjIw_ol_a4XMehaXC-cFh8PYWyl2Ukjz_rL7iwP6sFNCLdBOCP2MbWTbmKqutXnONqLTXaXbtnvJXhFdhLhqpFEb9m-fhjEjEXpOGCnE3xyi59MZ-UzI04mPZ1hYyBkeuEuhJx4iV_oW-Lcf1x84FHAYIQdKcdEDvzvc3h2q42qLyxWHD_fBz9D3S8hwDLGQw9xPoXJniBF7ntGlSFOe3RRSfM1enKAnfPP4t-zX58PP_dfq5vuX6_2nm8rJtlYVdEcH_nRVewOlo6hd24JxXgqQSgtvGq07fzS18q3SGkQHTdeAa73pQGuvt-zdmjvm9GdGmuwQyGHfQ8Q0k1W1EU0jmpK2ZfUqdTkRZTzZMYcB8oOVwi5L2Itdl7DLEgtalii2j6sNS437gNmSCxhd0ZXKk_UpPB3wH8xplMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460770712</pqid></control><display><type>article</type><title>Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lachner, Sebastian ; Utzschneider, Matthias ; Zaric, Olgica ; Minarikova, Lenka ; Ruck, Laurent ; Zbýň, Štefan ; Hensel, Bernhard ; Trattnig, Siegfried ; Uder, Michael ; Nagel, Armin M.</creator><creatorcontrib>Lachner, Sebastian ; Utzschneider, Matthias ; Zaric, Olgica ; Minarikova, Lenka ; Ruck, Laurent ; Zbýň, Štefan ; Hensel, Bernhard ; Trattnig, Siegfried ; Uder, Michael ; Nagel, Armin M.</creatorcontrib><description>To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets.
In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND).
The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506).
The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.</description><identifier>ISSN: 0939-3889</identifier><identifier>ISSN: 1876-4436</identifier><identifier>EISSN: 1876-4436</identifier><identifier>DOI: 10.1016/j.zemedi.2020.10.003</identifier><language>eng</language><publisher>Elsevier GmbH</publisher><subject>Compressed sensing ; Iterative reconstruction ; Multi-channel ; Prior knowledge ; Sensitivity encoding ; Sodium MRI</subject><ispartof>Zeitschrift für medizinische Physik, 2021-02, Vol.31 (1), p.48-57</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3</citedby><cites>FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3</cites><orcidid>0000-0002-8211-2828 ; 0000-0002-5978-3383 ; 0000-0003-4589-5963 ; 0000-0003-0948-1421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lachner, Sebastian</creatorcontrib><creatorcontrib>Utzschneider, Matthias</creatorcontrib><creatorcontrib>Zaric, Olgica</creatorcontrib><creatorcontrib>Minarikova, Lenka</creatorcontrib><creatorcontrib>Ruck, Laurent</creatorcontrib><creatorcontrib>Zbýň, Štefan</creatorcontrib><creatorcontrib>Hensel, Bernhard</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Uder, Michael</creatorcontrib><creatorcontrib>Nagel, Armin M.</creatorcontrib><title>Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction</title><title>Zeitschrift für medizinische Physik</title><description>To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets.
In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND).
The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506).
The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.</description><subject>Compressed sensing</subject><subject>Iterative reconstruction</subject><subject>Multi-channel</subject><subject>Prior knowledge</subject><subject>Sensitivity encoding</subject><subject>Sodium MRI</subject><issn>0939-3889</issn><issn>1876-4436</issn><issn>1876-4436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcuK1EAULUTBtvUPXNTSTdp6ZCqJC0GaVgfGERxdF7erbtvVJFWxbjIw_ol_a4XMehaXC-cFh8PYWyl2Ukjz_rL7iwP6sFNCLdBOCP2MbWTbmKqutXnONqLTXaXbtnvJXhFdhLhqpFEb9m-fhjEjEXpOGCnE3xyi59MZ-UzI04mPZ1hYyBkeuEuhJx4iV_oW-Lcf1x84FHAYIQdKcdEDvzvc3h2q42qLyxWHD_fBz9D3S8hwDLGQw9xPoXJniBF7ntGlSFOe3RRSfM1enKAnfPP4t-zX58PP_dfq5vuX6_2nm8rJtlYVdEcH_nRVewOlo6hd24JxXgqQSgtvGq07fzS18q3SGkQHTdeAa73pQGuvt-zdmjvm9GdGmuwQyGHfQ8Q0k1W1EU0jmpK2ZfUqdTkRZTzZMYcB8oOVwi5L2Itdl7DLEgtalii2j6sNS437gNmSCxhd0ZXKk_UpPB3wH8xplMU</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Lachner, Sebastian</creator><creator>Utzschneider, Matthias</creator><creator>Zaric, Olgica</creator><creator>Minarikova, Lenka</creator><creator>Ruck, Laurent</creator><creator>Zbýň, Štefan</creator><creator>Hensel, Bernhard</creator><creator>Trattnig, Siegfried</creator><creator>Uder, Michael</creator><creator>Nagel, Armin M.</creator><general>Elsevier GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8211-2828</orcidid><orcidid>https://orcid.org/0000-0002-5978-3383</orcidid><orcidid>https://orcid.org/0000-0003-4589-5963</orcidid><orcidid>https://orcid.org/0000-0003-0948-1421</orcidid></search><sort><creationdate>202102</creationdate><title>Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction</title><author>Lachner, Sebastian ; Utzschneider, Matthias ; Zaric, Olgica ; Minarikova, Lenka ; Ruck, Laurent ; Zbýň, Štefan ; Hensel, Bernhard ; Trattnig, Siegfried ; Uder, Michael ; Nagel, Armin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressed sensing</topic><topic>Iterative reconstruction</topic><topic>Multi-channel</topic><topic>Prior knowledge</topic><topic>Sensitivity encoding</topic><topic>Sodium MRI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lachner, Sebastian</creatorcontrib><creatorcontrib>Utzschneider, Matthias</creatorcontrib><creatorcontrib>Zaric, Olgica</creatorcontrib><creatorcontrib>Minarikova, Lenka</creatorcontrib><creatorcontrib>Ruck, Laurent</creatorcontrib><creatorcontrib>Zbýň, Štefan</creatorcontrib><creatorcontrib>Hensel, Bernhard</creatorcontrib><creatorcontrib>Trattnig, Siegfried</creatorcontrib><creatorcontrib>Uder, Michael</creatorcontrib><creatorcontrib>Nagel, Armin M.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Zeitschrift für medizinische Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lachner, Sebastian</au><au>Utzschneider, Matthias</au><au>Zaric, Olgica</au><au>Minarikova, Lenka</au><au>Ruck, Laurent</au><au>Zbýň, Štefan</au><au>Hensel, Bernhard</au><au>Trattnig, Siegfried</au><au>Uder, Michael</au><au>Nagel, Armin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction</atitle><jtitle>Zeitschrift für medizinische Physik</jtitle><date>2021-02</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>48</spage><epage>57</epage><pages>48-57</pages><issn>0939-3889</issn><issn>1876-4436</issn><eissn>1876-4436</eissn><abstract>To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets.
In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND).
The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506).
The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.</abstract><pub>Elsevier GmbH</pub><doi>10.1016/j.zemedi.2020.10.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8211-2828</orcidid><orcidid>https://orcid.org/0000-0002-5978-3383</orcidid><orcidid>https://orcid.org/0000-0003-4589-5963</orcidid><orcidid>https://orcid.org/0000-0003-0948-1421</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-3889 |
ispartof | Zeitschrift für medizinische Physik, 2021-02, Vol.31 (1), p.48-57 |
issn | 0939-3889 1876-4436 1876-4436 |
language | eng |
recordid | cdi_proquest_miscellaneous_2460770712 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Compressed sensing Iterative reconstruction Multi-channel Prior knowledge Sensitivity encoding Sodium MRI |
title | Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A18%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressed%20sensing%20and%20the%20use%20of%20phased%20array%20coils%20in%2023Na%20MRI:%20a%20comparison%20of%20a%20SENSE-based%20and%20an%20individually%20combined%20multi-channel%20reconstruction&rft.jtitle=Zeitschrift%20f%C3%BCr%20medizinische%20Physik&rft.au=Lachner,%20Sebastian&rft.date=2021-02&rft.volume=31&rft.issue=1&rft.spage=48&rft.epage=57&rft.pages=48-57&rft.issn=0939-3889&rft.eissn=1876-4436&rft_id=info:doi/10.1016/j.zemedi.2020.10.003&rft_dat=%3Cproquest_cross%3E2460770712%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1842-a9bcadf54d6a93904c88a6cd10a1230d67339db642d8233a09a797ac8d69a33d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460770712&rft_id=info:pmid/&rfr_iscdi=true |